The Universal NetworkingLanguage (UNL) Specifications Version 1.5

Restricted-access Document:
Do not copy or distribute,
except asspecified under contractual conditions

UNU/IAS/UNL Center May, 1998

Introduction

The Universal Networking Language(UNL) is a electronic language for describing, summarizing, refining, storing and disseminating information in a machine- and natural-language-independent form.

System architecture

grid The UNL system

The UNL system is a set of interrelated modules for the extraction, storage, retrieval and expression of information.

Extraction of information

Extraction of information from natural-language text is carried out(semi-)automatically by a module called an "enconverter" which transforms a text into a UNL document with the help of ahumans or by a human technician whodoes the same with the aid of a UNL editor.

The UNL editor combines modules for enconverting and deconverting between a given language and the UNL, providing the user with tools to provide feedbackabout how accurate the UNL document is and to modify it until it is preciseenough for the user's needs.

Storage and processing ofinformation

Storage of information is in the form of anarchive of UNL documents: the UNL Document Base. This is an archive of human-language-independent information all represented in the same format:the UNL.

Other modules of the UNL systemmaintain full list of Universal Words(UWs) which express concepts. This UW maintenance tool is accessible bye-mail and is called the "UW Gate" Use of this tool makes expansion of the concept inventory more efficient.

Another important tool is that which maintains the ontology or conceptual hierarchy. This tool is accessible by e-mailand is called the "KB Gate". The conceptual hierarchyplays a central role in locating new conceptson the epistemological "map" of existing concepts and again makes expansion of the concept inventorymore efficient.

Retrieval of information

Search engines are being developed to takeadvantage of the specific properties of the UNLfor optimizing search over the documentbase. Rather than searching for naturallanguage character strings, this system willsearch for UNL expressions, regardless of the human language they were derived from. The UNL language serves as the interface between the documentbase and the search engines: the result of a search or retrieval operation is a UNL document.

Expression of information

Deconverting or generation ofhuman-language text is carried out automatically by a module called a "deconverter". This module transforms aUNL document into a text in whatever languagethere is a deconverter for. The same UNL document can simultaneously be routed to different users for viewing in their respective languages, with deconverting onreception.

Another module, called the UNLviewer, manages the existing human-language versions of given UNL document, for viewing in whatever language is desired.

In all cases, the interface is the UNL language specified here: it defines the interface between the enconverters and deconverters for different human languages and also for operations on the resultingarchive of UNL Documents.

grid The UNL language

The UNL represents information, i.e. meaning, sentence by sentence for each sentence of a given text. Sentence information is represented as a hyper-graph having concepts as nodes andrelations as arcs. This hyper-graph is also represented a set ofdirected binary <u>relations</u>, each between two of the concepts present in thesentence.

Concepts are represented ascharacter-strings called "Universal Words(ldrslt <u>UWs</u>)". UWs can be annotated with <u>attributes</u> which provide further information about how the concept is being used in the specific sentence where it was found.

The conceptual relations thatbuild structures out of UW concepts are signaled in natural language textsby different grammatical means: word order, suffixes, agreement, etc. for different languages. The UNLtools for each language define a systematic mapping between the grammatical clues of that language and the UNLrelations that they signal.

A UNL document, then, will be along list of relations between the concepts cited in thenatural-language text it was generated from, independently of the specific language it was in or of the specific grammatical mechanisms used for their expression.

It is important to understandthat the UNL does not provide a single way of representing a given meaning. Rather, it provides tools and an environment for exploring differentalternatives for conceptual representations that are adequate for a widevariety of languages. During the development effort, sub-languages or "dialects" of the UNL will surely arise. The best of them willbecome de factostandards for the development community.

grid The Role of English in the UNL

The role of English in the UNL islimited. English-language labels are used for therelation-labels, UWs and attributes of the system. For the simple reason that almostall possible developers of the UNL will have access to English-language dictionaries, English is used as the language of communication for the project. Many of the relation-labels and UWs denote things that are not at all common in the English language or Anglo-American culture.

Relations

Binary relations are the building blocks of UNL documents. They are madeup of a conceptual relation and two UWs, with some added mechanisms formaking notations on the relation or UWs. Binary relations often stand alone, but just as often can be grouped together in different ways. Thissection deals with the definition and interpretation of the types ofconceptual relations that are used as the basis of the UNL and knowledge base relations that are used to buildup a knowledge base.

Because of their similarity inname and function to "case relations" and "UWs" or "valences" in linguistics, and their close relation in practice to some grammatical structures, it may seem that the labels used for these conceptual relations are different names for special grammatical functions. This isemphatically not the case. The intention is that the labels used denotespecific ideas rather than grammatical structures: the idea of "something that initiates an event," or "

fldrslt <u>agent</u>" for example, is quite different from "grammatical subject of asentence", even though many times the subject of a sentencein English will indicate the agent of the event. The agent of an event may alsoappear as an adjective or noun modifier, withthe preposition "by" or embedded in nouns with "er" suffixes in English. The whole point of the conceptual relations is to have a name for thesevery different grammatical structures which are conceptually quite thesame. Thus, the conceptual relations used here are much moreabstract than the grammatical relations found in sentences.

The conceptual relations between UWs in binary relations have different <u>labels</u> according to the different roles they play. These Relation-Labels are listed and defined below. Conventions for syntax notation are found in Appendix 1.

Internal structure ofBinary relations

Binary relations are made up as follows:

```
<Binary Relation> ::= <RelationLabel>[":"<Compound UW-ID>]
    "(" {<UW1>|":" <CompoundUW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"
```

These elements will be defined in theparagraphs below.

Example binary relations are:

```
mod:01(area(icl>place):02.@indef,strategic)
obj(designate(icl>event).@entry.@pred.@may, :01)
ppl(read(icl>event), home)
```

grid Relation-Labels

Relation-labels are strings of three lower-case alphabetic characters taken from the closed inventory listed below. Examples are the elements in bold face typebelow:

```
mod:01(area(icl>place):02.@indef, strategic)
obj(designate(icl>event).@entry.@pred.@may, :01)
ppl(read(icl>event), home)
```

grid Compound UW-IDs

Compound UW-IDsare digits (":" followedby two digits) used to define compound UWs which are groups ofbinary relations(called "Scope-Nodes") so that they can be referred to a unit. Examples are the elements in bold facetype below. The first example is an instance of compound UW-IDs being used to define a unit; the second example is aninstance of compound UW-IDs being used to cite or refer to a compound UW-reviously defined. See Compound UWs for further information.

```
mod:01(area(icl>place):02.@indef, strategic) obj(designate(icl>event).@entry.@pred.@may, :01) ppl(read(icl>event), home(icl>place))
```

Note that the ":02" in the first example is NOT a Compound UW-IDs are either attached directly to Relation-Labels or appear alone, as UWs. See <u>Instance IDs</u> for further information.

grid UWs

UWs can be UWs or compound UWs. Examples are the six elements in bold face type below. Non-standard formatting has been used to makethem clearer.

```
mod:01( area(icl>place):02.@indef, strategic)
ppl( read(icl>event), home(icl>place))
obj( designate(icl>event).@entry.@pred.@may, :01)
```

Conceptual relations

Conceptual relations and UWsare components of informational structurescalled events, states, facts, assertions, etc., which can be represented byone or more binaryrelations. Conceptual relations are informationally distinct and representidentifiable, general, recurring relations between the UWs cited in sentences. In the UNL, conceptual relations are represented as three-character strings called "Relation-Labels" and are defined as specified below.

There are many factors to beconsidered in choosing an inventory of conceptualrelations. The choice below reflects the conflicting demands of:

- minimizing the number of relations for the sake of efficiency, making thefewest distinctions necessary, and
- maximizing the number of relations for the sakeof ease of description and forbuilding some redundancy into the system.

The selection below represents at attempt to find a compromise between these two principles.

hading1500agt (agent)

"Agt" defines a thing in forcus which initiates an event.

```
agt ({event}, {thing})
```

Syntax

agt[":"<Compound UW-ID>] "("{<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<CompoundUW-ID>} ")"

Detailed Definition

"Agent" is defined as the relationbetween:

UW1 - an event, and

UW2 - a thing

where:

- •UW2 initiates UW1, or
- UW2 isthought of as having a direct role in making UW1 happen, or
- UW2 can be thought of as "cause" and UW1, "effect".

Examples andreadings

```
agt(break(icl>event), John(icl>human))John breakagt(save(icl>event),computer(icl>machine))computersaves ...agt(tell(icl>event),machine(icl>thing))machine tells ...agt(break(icl>event),explosion(icl>event))explosion... breaks
```

Related concepts

Agent is different fromldrslt <u>co-agent</u> in that agent initiates the event in focus, whereas the co-agentinitiates a different, secondary event.

Agentis different from ldrslt <u>partner</u> in that agent is the focussed initiator of the event, whereas the partneris a non-focussed initiator.

Agent is different from

fldrslt <u>condition</u> in that agent is the focussedinitiator of an event, whereas condition is an indirect, usuallyunfocussed, influence on the event.

hading1500and (conjunction)

"And" defines a conjunctive relation between concepts.

```
and({concept},{concept})
```

Syntax

and[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Conjunction" is defined as therelation between:

UW1 – a concept, and

UW2 – a concept,

where:

- The UWs are different, and
- UW1 and UW2 are seen as grouped together, and
- what is said of UW1 isalso said of UW2.

Examples andreadings

and(easily(icl>manner),quickly(icl>manner)) ... easily and quickly and(think(icl>event),dream(icl>event)) ... to think and to dream and(John(icl>human),Mary(icl>human)) ... John and Mary

Related concepts

Conjunction is different from lt or in that with and we group things together to say the same thing about both of them, whereas with or we separate them to say that what is true about one is not true about the other.

Conjunction is differentfrom ldrslt <u>cag</u> in that when agents are conjoined both are initiating an explicit event, whereas with cag, the co-agent initiates an implicit event.

Conjunction is different from

fldrslt ptn in that when agents and partnersare conjoined both are in focus, whereas with

fldrslt ptn, the partner is not in focus (as compared to the agent).

Conjunction is different from

fldrslt <u>coo</u> and ldrslt <u>seq</u> in meaning, although many timesthe same expressions can be used forboth. Conjunction only means that terms are grouped together; no informationabout time is implied. ldrslt <u>Coo</u>, on the other hand, means that the terms are ordered in time, whether ornot they are considered to be groupedtogether. In turn, ldrslt <u>seq</u> means very clearly that the terms are ordered in time, one after the other.

hading1500aoj (attribute of things)

"Aoj" defines a thing which hasan attribute.

```
aoj ({state},{thing})
```

Svntax

aoj[":"<Compound UW-ID>] "("{<UW1>|":"<CompoundUW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Attribute of things" is defined asthe relation between:

UW1 – a characteristic orstate, and

UW2 - a thing,

where:

- UW1 is a characteristic or attribute of UW2, or
- UW1 is a state associated with UW2.

Examples andreadings

aoj(red(icl>color), leaf(icl>thing)) leaf is red aoj(available(icl>characteristic),book(icl>thing)) book is available aoj(nice(icl>characteristic),ski(icl>event)) skiiingis nice

Related Concept

Attribute of things is different fromldrslt man in that aoj is used for characteristics of events treated as abstractwholes, whereas man is used for characteristics of events treated asconcrete changes over time, focusing how theevent occurred.

Attribute of things is different from

fldrslt mod in that mod gives some restriction, whereas aoj has the specific interpretation: "characteristic or state of".

hading 1500 bas (basis of comparison)

"Bas" defines thing used as the basis of comparison forfocussed thing.

bas ({state}, {thing})

Syntax

bas[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Basis of comparison" is defined asthe relation between:

UW1 – a concept of comparison, and

UW2 - a thing.

where:

- UW1 is a conceptof comparison, expressing similarity or difference, such as "more", "most", "less", "same", "similar", "like", etc., and
- UW2 is some thing used as the basis of comparison for evaluating characteristics of some other (focussed) thing.

Examples andreadings

bas(more(icl>comparison),rat(icl>thing)) ...er than rat; more ... than rat bas(like(icl>comparison),star(icl>thing)) ... like star bas(same(icl>comparison),b(icl>thing)) ... the same as b

Related concepts

Basis of comparison is different fromldrslt <u>aoj</u> in that bas is used to describe by reference to something different from the thing described. As well, for bas the second UW is used tocharacterized some different, focussed thing, whereas for aoj the second UW is in focus.

Basis of comparison is different from

fldrslt <u>per</u> in that for bas the second UW is a thing, whereas for per the second UW is a quantity or a thing seen as aquantity.

hading1500cag (co-agent)

"Cag" defines a thing not infocus which initiates an event.

cag ({event},{thing})

Svntax

cag[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Co-agent" is defined as therelation between:

UW1 - an event, and UW2 - a thing

where:

- There is an implicit event that is independent of, but "accompanies", UW1, and
- UW2 is thought of as initiating the implicitevent, and
- UW2 and the implicit event are seen as notbeing in focus (as compared to the agent's event).

Examples andreadings

cag(walk(icl>event), John(icl>human)) ... walkwith John cag(live(icl>event),aunt(icl>human)) ... lives withaunt cag(talk(icl>event),machine(icl>thing)) ... talk with machine

Related concepts

Co-agent is different from ldrslt <u>agent</u> in that different, independent events occur for the agent and the co-agent. Moreover, the agent and its event are in focus, while the co-agent and its event are not in focus.

Co-agent is different from the

fldrslt <u>partner</u> in that the co-agent initiates an event thatis independent of the agent's event, whereas the partner initiates the same event togetherwith the agent.

Co-agent is different from

fldrslt <u>condition</u> in that the co-agent initiates a non-focussed event, whereas the condition is anindirect influence on the focussed event.

hading1500cob (co-object)

"Cob" defines a thing not infocus which is directly affected by an event.

```
cob ({event},{thing})
```

Syntax

cob[":"<CompoundUW-ID>] "("{<UW1>|":"<CompoundUW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed Definition

"Co-object" is defined as the relationbetween:

UW1 – an event, and

UW2 - a thing,

where:

- UW2 is not a place, and
- UW2 is thought of as changing itscharacteristics or location as described by a usually implicit, non-focussed eventthat is different from UW1 and considered to be its counterpart.

Examples andreadings

cob(get(icl>event), money(icl>thing)) ... get... for money

Related concepts

Co-object is different from ldrslt obj in that the obj is in focus, whereas the cob is related to a second,non-focussed event.

Co-object is different from

fldrslt opl in that what is affected by the event is a place rather than other kindsof things.

hading 1500 con (condition)

"Con" defines an non-focused event or state which influences on an focused event or state.

con ({focussed event},{conditioning event})

```
con ({focussed event},{conditioning state})
con ({focussed state},{conditioning event})
con ({focussedstate},{conditioning state})
```

Syntax

con[":"<Compound UW-ID>]"(" {<UW1>|":" <Cch**ompound UW-ID>**}"," {<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Condition" (or "influence") is defined as the relation between:

UW1 - a focussed event orstate, and

UW2 – a conditioning eventor state,

where:

- UW1 and UW2 are different and

Examples andreadings

```
aoj:01(green(icl>color), light(icl>thing))
If light is green,... go
con(go(icl>event), :01)
agt:01(arrive(icl>event), Mary(icl>human))
Because Maryarrive, team collaborate ...
agt:02(collaborate(icl>event), team(icl>human)
con(:02, :01)
```

RelatedConcepts

See the related concepts ofldrslt <u>agent</u>, ldrslt <u>co-agent</u> and ldrslt <u>partner</u>.

t hcoo (co-occurrence)

"Coo" defines aco-occurred event or state for a focussed eventor state.

```
coo ({focussed event},{co-occurrence event})
coo ({focussed state},{co-occurrence state})
```

Syntax

coo[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detaileddefinition

"Co-occurrence" is defined as the relation between:

UW1 – a focussed event orstate,

UW2 – a co-occurredevent or state,

where:

- UW1 and UW2 are different, and
- UW1 occurs or is true at the same time as UW2.

Examples andreadings

```
coo(leap(icl>event), look(icl>event))... look as ... leapcoo(hot(icl>characteristic),red(icl>color))... is red while... is hotcoo(run(icl>event), cry(icl>event))... cry and run
```

Related concepts

Co-occurrence is different fromldrslt <u>seq</u> in that seq describes events or states that do not occur at the same time, but one afterthe other, whereas coo describes events that occur simultaneously.

Co-occurrence is different from

fldrslt tim in that coo relates the times of events orstates with other events or states, whereas tim relatesevents or

states directly with points or intervals of time.

hading1500exp (experiencer)

"Exp" defines a cognitive thingof an event or state.

```
exp ({event},{human})
exp ({state},{human})
```

Syntax

exp[":"<Compound UW-ID>]"("{<UW1>|":"<CompoundUW-ID>} "."{<UW2>|":"<Compound UW-ID>} ")"

Detailed Definition

"Experiencer" is defined as therelation between:

UW1 – an event or state, and

UW2 – a human ornon-human, seen-as-cognitive thing,

where:

- UW1 is a subjective orphysiological event or state, and
- UW2 is thought of as experiencing, feeling orperceiving UW1, or
- UW2 is thought of as the reference, perspectiveor point of view for defining UW1, or
- UW2 is thought of as indirectly affected by UW1, as victim or beneficiary, for example.

Examples andreadings

exp(feel(icl>event), sick(icl>state)) ...feel sick exp(think(icl>event),Mary(icl>human)) Mary thinks... exp(difficult(icl>state),John(icl>human)) ... is difficult for John

Related concepts

Experiencer is different from ldrslt obj in that experiencer is related to a subjective or physiological event orstate, whereas obj is related to other kinds of events.

Experiencer is different from

fldrslt opl in that for opl what isaffected by the event is a place rather than a cognitive thing.

hading1500fmt(range:from-to)

"Fmt" defines a range betweentwo things.

fmt ({range-initial thing}, {range-final thing})

Syntax

fmt[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Range" ("from-to") is defined as the relation between:

UW1 – a range-initialthing, and

UW2 – a range-finalthing,

where:

- The UWs are different, and
- UW2 describes the beginning of a range and UW1 describes the end.

Examples andreadings

fmt(a(icl>letter), z(icl>letter)) ... from a to z

fmt(Osaka(icl>place), NewYork(icl>place)) ... from Osaka to New York

fmt(Monday(icl>time),Friday(icl>time)) ... from Mondayto Friday

Related concepts

Range is different fromldrslt <u>src</u> and ldrslt <u>gol</u> in that for src and gol the initial and final states of some obj arecharacterized with respect to some event, whereas fmt makes a similarcharacterization but without linking the endpoints of a rangeto some event.

Range is different from

fldrslt plf and

f0 plt or

fldrslt tmf and ldrslt tmt in that fmt defines endpoints of a rangewithout reference to any sort of event, whereas plf, plt, tmf and tmt delimit events.

hading 1500 gol (goal: final characteristics)

"Gol" defines the final state of objector the thing finally associated with object of an event.

```
gol({event},{state or thing})
```

Syntax

gol[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Final characteristics" (or "goal state") is defined as the relation between:

UW1 – an event, and

UW2 - a state orthing,

where:

- UW2 is the specific state describing theldrslt obj (ofUW1) at the end of UW1, or
- UW2 is a thing that is associated with the obj(of UW1) and the end of UW1.

Examples andreadings

```
gol(go(equ>change),sad(icl>characteristic))... go ... to sadgol(change(icl>event),red(icl>color))... change ... to redgol(transform(icl>event),strong(icl>characteristic))... is transformed... to stronggol(post(icl>event),account(icl>place))... post ... to account
```

Related concepts

Final characteristics is different from $ldrslt \underline{rmf}$ and $ldrslt \underline{plf}$ in that gol describes qualitative characteristics and not time or place.

Final characteristics is different from

fldrslt src in that gol describes the characteristics of the obj at the final stateof the event.

hading 1500 ins (instrument)

"Ins" defines the instrument tocarry out an event.

```
ins ({event}, {concrete thing})
```

Syntax

```
ins[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"
```

Detailed definition

"Instrument" is defined as therelation between:

UW1 – an event, and

UW2 – a concretething,

where:

• UW2 specifies the concrete thing which is used in order to make UW1 happen.

Examples andreadings

```
ins(look(icl>event),telescope(icl>thing)) ... look ... with telescope ins(solve(icl>event),pencil(icl>thing)) ... solve... using pencil ins(separate(icl>event),knife(icl>thing)) ... separate ... with knife
```

Related concepts

Instrument is different from drslt man in that man describes an event as a whole, whereas ins characterizes one of the components of the event: the use of the instrument.

Instrument is different from

fldrslt met in that met is used for abstract things (abstract means or methods), whereas ins is used for concrete things.

hading1500lpl (logical place)

"Lpl"defines logical or metaphorical place where an event occurs.

```
lpl ({event}, {logical place})
```

Syntax

lpl[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Logical place" is defined as therelation between:

UW1 - a thing,

UW2 – an abstract ormetaphorical thing understood as a place,

where:

- The UWs are different, and
- UW1 is or happens in a place characterized by UW2.

Examples andreadings

```
lpl(cook(icl>event), under(icl>place))...cook ... under pressuremod(under(icl>place),pressure(icl>characteristic))... win ... in competitionlpl(surf(icl>event),internet(icl>thing))... surf on internet
```

Related concepts

Logical place is different fromldrslt <u>ppl</u> in that the reference place for ppl is concrete, whereas for lpl it is abstract or metaphorical.

Logical place is different from

fldrslt plf and ldrslt plt or

fldrslt <u>src</u> and ldrslt <u>gol</u> inthat lpl describes a place metaphorically, with respect to an event as awhole, whereas these other relations describe position with respect toparts of an event.

Logical place is different from

fldrslt opl in that lpl is not seen as being modified by an event, merely a reference point forcharacterizing it, whereas opl is seen as being modified.

Lpl is used for absolute(non-relative) position or location in general.

Relative logical or metaphorical position can bestbe expressed using ldrslt bas.

hading1500man (manner)

"Man" defines the way to carryout event or characteristics of a state.

```
man ({event}, {manner})
```

```
man ({state},{manner})
```

Svntax

man[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Manner" is defined as the relation between:

UW1 – an event orstate,

UW2 – a state orcharacteristic.

where:

- The UWs are different, and
- UW1 is done in a way characterized by UW2, or
- UW2 is a state associated with (and simultaneous with)UW1.

Examples andreadings

```
man(look(icl>event),quickly(icl>manner)) ... look quickly man(think(icl>event),often(icl>frequency)) ... think often... man(sleep(icl>event),hour(icl>period)) ... sleep for hour
```

Related concepts

Manner is different fromldrslt <u>ins</u> or ldrslt <u>met</u> inthat met describes how an event is carried out in terms of the instrumentsor component steps of the event, whereas man describes other quantitative qualitative characteristics of the event as a whole.

hading1500met (method or means)

"Met" defines the means to carryout an event.

```
met ({event}, {abstract thing})
```

Syntax

met[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Method or means" is defined as therelation between:

UW1 – an event, and

UW2 – an abstractthing,

where:

• UW2 specifies the abstract thing which is used or the steps carried out in order to make UW1 happen.

Examples and readings

```
met(solve(icl>event), dynamics(icl>theory)) ... solve ... with dynamics met(solve(icl>event), algorithm(icl>method)) ... solve ... using algorithm met(separate(icl>event), cut(icl>event)) ... separate ... by cutting ...
```

Related concepts

Method or means is different fromldrslt man in that man describes an event as a whole, whereas met characterizes the component steps, procedures or instruments of the event.

Method or means is different from

fldrslt ins in that met is used for abstract things (abstract means or methods), whereas ins is used for concrete things.

hading 1500 mod (modification)

[&]quot;Mod" defines a thing which restrict a focussed thing.

```
mod ({focussed thing},{thing})
```

Syntax

mod[":"<Compound UW-ID>] ","{<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Modification" is defined as the relation between:

UW1 - a focussedthing,

UW2 – a non-focussedthing,

where:

• UW2 restricts UW1 in some way.

Examples andreadings

```
mod(pet(icl>animal), house(icl>thing)) house pet mod(Bill Gates(icl>human), Microsoft(icl>institution)) Microsoft't Bill Gates mod(car(icl>thing), I(icl>human)) my car
```

Related concepts

Modificationis different from ldrslt <u>aoj</u> in that aoj describes something that is literally and explicitly a characteristic of the thingdescribed, whereas mod merely indicates an restriction, which might indirectly suggest some characteristics of the thingdescribed. Most mod relations require a paraphrase introducing someimplicit event to become clearer and even then many possibilities are usually available.

Modification is different from ldrslt man in that UW1 for mod is a thing, whereas for man UW1 is an event orstate.

hading1500obj (affectedthing)

"Obj" defines a thing in focus which is directly affected by an event.

```
obj ({event},{thing})
```

Syntax

obj[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed Definition

"Affectedthing" is defined as the relation between:

UW1 - an event, and

UW2 – a(concrete or abstract) thing,

where:

- UW2 is not a place, and
- UW2 is thought of as changing itscharacteristics or location as described by UW1, or
- UW2 is what UW1 is about or refers to, when UW1is a "symbolic event" of perception, cognition, emotion, orcommunication.

Examples andreadings

```
obj(move(icl>event), table(icl>thing)) table move obj(melt(icl>event), snow(icl>substance)) ... move table obj(think(icl>event), Mary(icl>human)) ... think of Mary
```

Related concepts

Affectedthing is different fromldrslt <u>cob</u> in that the obj is in focus, whereas the cobis related to a second, non-focussed event.

Affected thing is different fromldrslt <u>exp</u> in that obj is the topic of a symbolic event, whereas exp is the human(or human-like thing) where the symbolic eventoccurs.

Affected thing is different from ldrslt opl in that obj is not seen as a place, whereas opl is seen as a place.

hading1500opl (affected place)

"Opl" defines a place in focuswhere an event affects.

```
opl ({event},{place})
```

Syntax

opl[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed Definition

"Affected place" (or "obj-like place") is defined as the relation between:

UW1 – an event, and

UW2 - a placeor thing defining a place,

where:

- UW2 is the specific place where the changedescribed by UW1 is directed, or
- UW2 is a place that is seen as being modifiedduring the event, and
- UW2 is usually a part of the thing cited asobj; both the obj and the opl are modified during the event.

Examples andreadings

```
opl(look(icl>event), eye(icl>thing)) ...look ... in eye opl(pat(icl>event),shoulder(icl>thing)) ... pat ... on shoulder opl(cut(icl>event),middle(icl>place)) ... cut ... in middle
```

Related concepts

Affected place is different from ldrslt obj, ldrslt cob and

fldrslt exp in that what is affected by the event is a place rather than other kindsof things.

Affected place is different fromldrslt <u>ppl</u> or ldrslt <u>lpl</u> in that the Affected place is modified during the event, while thephysical and logical place define the environment in which the eventhappens.

hading1500or(disjunction)

"Or" defines disjunctive relation between twoconcepts.

```
or ({concept}, {concept})
```

Syntax

opl[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Disjunction" is defined as therelation between:

UW1 – a concept, and

UW2 – a concept,

where:

- The UWs are different, and
- Some description is true for either UW1 or UW2(but not both), or
- Some description is true for either UW1 or UW2(and perhaps both).

Examples andreadings

```
or(stay(icl>event), leave(icl>event)) ...stay or leave or(red(icl>color),blue(icl>color)) ... red or blue or(John(icl>human),Jack(icl>human)) ... John or Jack
```

Related concepts

Disjunction is different from ldrslt conjunction in that the disjunction things are grouped in order to say that

something is true for one or the other, whereas in conjunction they are grouped to say that thesame is true for both. Disjunction in formal logic permits threesituations for a disjunction to be true: 1) it is true for UW1, 2) it is true for UW1, 3) it is true for both. On the other hand, conjunction only permits the third situation.

t per (proportion, rate or distribution)

"Per" defines a basis or unit ofproportion, rate or distribution.

```
per ({thing}, {thing as aunit})
```

Svntax

per[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Proportion, rate or distribution" isdefined as the relation between:

UW1 - a quantity,

UW2 – a quantity, or athing seen as a quantity,

where:

- UW1 and UW2 form a proportion, where UW1 is the numerator and UW2 is the denominator, or
- UW2 is the basis or unit for understanding UW1, or
- Each UW expresses a different dimension, of size, for example.

Examples andreadings

```
per(two(icl>number), day(icl>unit)) ... two... per day
per(three(icl>number), four(icl>number)) ... three... by four ...
per(twice(icl>frequency), week(icl>unit)) ... twice a week
```

Related concepts

Per is different fromldrslt <u>bas</u> in that bas relates a characteristic or state with a thing that is used a basis for comparison, whereas per relatesa quantity with another quantity that is used to establish a scale or abasis for comparison.

hading1500plf (initial place)

"Plf" defines the place an eventbegins or a state becomes true.

```
plf ({event or state}, {place})
```

Syntax

plf[":"<Compound UW-ID>] ","{<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Initial place" (or "place-from") is defined as the relation between:

UW1 - an event or state, and

UW2 – a place or thingdefining a place,

where:

- UW2 is the specific place where UW1 started, or
- UW2 is the specific place from where UW1 istrue.

Examples andreadings

```
      plf(go(icl>event), home(icl>place))
      ... gofrom home ...

      plf(call(icl>event), New York(icl>place))
      ... callfrom New York

      plf(cut(icl>event), edge(icl>place))
      ... cut... from edge...

      plf(beautiful(icl>characteristic), side(icl>place))
      ... is beautiful from side...
```

Related concepts

Initial place is different fromldrslt <u>ppl</u> and ldrslt <u>lpl</u> inthat ppl and lpl describe events or statestaken as wholes, whereas plf describes only the initial part of an event orstate.

Initial place is different from

fldrslt <u>plt</u> in that plt describes the final part of anevent or state, whereas plf describes the initial part of an event orstate.

Initial place is different from

fldrslt src in that plf describes the place where the event began, whereas srcdescribes the initial state of the obj.

hading1500plt (final place)

"Plt" defines the placean event ends or a state becomes false.

```
plt ({event or state}, {place})
```

Syntax

plt[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Final place" (or "place-to") is defined as the relationbetween:

UW1 – an event or state, and

UW2 – a place or thingdefining a place,

where:

- UW2 is the specific place where UW1 ended, or
- UW2 is the specific place where UW2 becomes false.

Examples andreadings

```
plt(sing(icl>event), home(icl>place)) ....sing ... home...
plt(talk(icl>event), Boston(icl>place)) ....talk ... until Boston
plt(cut(icl>event),edge(icl>place)) ... cut ... to edge
plt(beautiful(icl>characteristic),fence(icl>place)) ... is beautiful up to fence
```

Related concepts

Final place is different fromldrslt <u>ppl</u> and ldrslt <u>lpl</u> inthat ppl and lpl describe events or states taken as wholes, whereas pltdescribes only the final part of an event.

Final place is different from

fldrslt <u>plf</u> in that pltdescribes the final part of an event or state, whereas plf describes the initialpart of an event. Final place is different from

fldrslt gol in that plt describes the place where an event or state ended, whereasgol described the final state of theobi.

hading 1500 ppl (physical place)

"Ppl" defines the place an eventoccurs or a state is true or a thing exists.

```
ppl ({eventor state or thing},{physical place})
```

Syntax

```
ppl[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"
```

Detailed definition

"Physical place" is defined as therelation between:

UW1 – a (concrete orabstract) thing.

UW2 – a physical place or concrete thing understood as a place,

where:

- The UWs are different, and
- UW1 is or happens in a placecharacterized by UW2.

Examples andreadings

```
ppl(cook(icl>event),kitchen(icl>thing)) ... cook ... in kitchen ppl(sit(icl>event), beside(icl>relativeplace)) ... sit beside ... ppl(red(icl>characteristic),bottom(icl>thing)) ... red on bottom
```

Related concepts

Physical place is different from ldrslt <u>lpl</u> in that the reference place for ppl is concrete or physical, whereas forlpl it is abstract, logical or metaphorical.

Physical place is different fromplff0 and ldrslt plt or

fldrslt <u>src</u> and ldrslt <u>gol</u> in that ppl describes a place with respect toan event as a whole, whereas these other relations describe position withrespect to parts of an event.

Physical place is different from

fldrslt opl in that ppl is not seen as being modified by an event, merely a referencepoint for characterizing it, whereas opl is seen as being modified.

hading1500ptn (partner)

"Ptn" defines indispensablenon-focused initiator of an event

```
ptn ({event},{thing})
```

Svntax

ptn[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Partner" is defined as the relationbetween:

UW1 - an event, and

UW2 - a human or non-human, seen-as-volitional thing

where:

- UW2 is thought of as having a direct role inmaking an indispensable part of UW1 happen, and
- UW1 is the same, collaborative event as that initiated by the Agent, and
- UW2 is seen as not being in focus (as compared to the agent).

Examples andredings

```
ptn(compete(icl>event), John(icl>human)) ....compete with John ptn(share(icl>event),poor(icl>human)) .... share... with poor ptn(collaborate(icl>event),machine(icl>thing)) .... collaborate with machine
```

Related concepts

Partner is different fromldrslt agent in that the agent and its event are in focus, while the partner and itsevent are not in focus.

Partner is different from

fldrslt <u>co-agent</u> in that the co-agent initiates an event thatis independent of the agent's event, whereas the partner initiatesthe same event together with the agent.

Partner is different from

fldrslt <u>condition</u> in that the partner initiates the same event as the agent does whereasthe condition is only an indirect influence onthat event.

hading1500pur (purpose or objective)

"Pur" defines the purpose orobjectives of agent of an event or the purpose of a thing exist.

```
pur ({event},{event})
pur ({event},{thing})
pur ({thing},{event})
pur ({thing},{thing})
```

Syntax

pur[":"<Compound UW-ID>]"(" {<UW1>|":"<CompoundUW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Purpose or objective" is defined asthe relation between:

UW1 – a thing or an event, and

UW2 - a thing or an event,

where:

• The UWs are different, and

When UW1 is anevent:

- UW2 specifies the agent's purpose orobjectives, or
- UW2 specifies the thing (object, state, event, etc.) that the agentdesires to attain by carrying out UW1, or
- UW1 is done so that the agent canget/receive/acquire UW2.

When UW1 is not an event:

• UW2 is what UW1 is to be used for.

Examples andreadings

```
pur(come(icl>event)), see(icl>event))...come to seepur(work(icl>event),money(icl>thing))... work for moneypur(budget(icl>money),research(icl>event))... budget for research
```

Relatedconcepts

Purpose or objective is different fromldrslt gol in that pur describes the desires of the agent, whereas gol describes the state of the

fldrslt obj at the end of the event.

Purpose or objective is different from

fldrslt man and ldrslt met in that pur describes the reason why theevent is being carried out, while man and met describe how it is being carried out.

hading 1500 qua (quantity)

```
"Qua" defines quantity of a thingor unit.
```

```
qua ({thing},{quantifier})
qua ({unit},{quantifier})
```

Syntax

```
qua[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"
```

Detailed definition

"Quantity" is defined as the relationbetween:

UW1 – a (concrete orabstract) thing or unit, and

UW2- a quantifier,

where:

• UW2 is thenumber or amount of UW1.

Examples andreadings

qua(block(icl>thing),3(icl>number))

three blocks of ice

```
mod(ice(icl>substance),block(icl>thing))
qua(kilo(icl>unit),many(icl>quantity))
qua(truckload(icl>unit), 7(icl>quantity))
many kilos...
seven truckload...
```

Related concepts

Quantity is different fromldrslt <u>per</u> in that quantity is absolute number or amount, whereas per is number oramount relative to some unit of reference (time, distance,etc.).

Quantity is also used to expressiteration, or number of times an event or state occurs.

hading 1500 seq (sequence)

"Seq" defines a prior event orstate of a focused event or state.

```
seq ({focusedevent},{prior event})
seq ({focusedstate},{prior state})
```

Syntax

seq[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Sequence" is defined as the relationbetween:

UW1 – a focussed event orstate,

UW2 – a prior event orstate,

where:

- The UWs are different, and
- UW1 occurs or is true after UW2.

Examples andreadings

```
seq(leap(icl>event), look(icl>event)) ...look before leaping seq(green(icl>color),red(icl>color)) ... was red before... was green
```

Related concepts

Sequence is different fromldrslt <u>coo</u> in that seq describes events or states that do not occur at the sametime, but one after the other, whereas coo describes events that occursimultaneously.

Sequence is different from

fldrslt <u>bas</u> in that seq describes eventsor states in terms of order in time, whereas bas describes things or statesin terms of qualitative differences or similarities.

hading1500smd (not conceptually related)

"Smd" defines not conceptually related concept for focussed concept.

```
smd ({focussed concept},{concept})
```

Syntax

```
smd[":"<Compound UW-ID>]"(" {<UW1>|":"<compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"
```

Detailed definition

"Not conceptually related" is defined as the relation between:

UW1 – a concrete orabstract thing, and

UW2 – a concrete orabstract thing,

where:

- The UWs are different, and
- UW1 is not conceptually related to UW2,or

• UW2 is something arbitrarily associated with UW1.

Examples andreadings

smd(item(icl>thing), "C3")) ... item C3 smd(step(icl>event),16(icl>number)) 16.Step ...

hading 1500 src (initial characteristics)

"Src" defines the initial state of object or the thing initially associated with object of an event.

src ({event},{state or thing})

Syntax

src[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Initial characteristics" (or "source state") is defined as the relationbetween:

UW1 - an event, and

UW2 – a state orthing,

where:

- UW2 is the specific state describing theobj of UW1 at the beginning of UW1, or
- UW2 is a thing that is associated with the objof UW1 at the beginning of UW1.

Examples andreadings

src(go(equ>change),sad(icl>characteristic))... go from sad ...src(change(icl>event),red(icl>color))... change from redsrc(transform(icl>event),weak(icl>characteristic))... is transformed from weak...src(steal(icl>event),account(icl>place))... steal ... from account

Related concepts

Initial characteristics is different fromldrslt <u>tmf</u> and ldrslt <u>plf</u> in that srcdescribes qualitative characteristics and not time or place.

Initial characteristics is different from

fldrslt gol in that gol describes the characteristics of the obj at the final stateof the event.

hading1500tim (time)

"Tim" definesthe time an event occurs or a state is true.

tim ({eventor state}, {time})

Syntax

tim[":"<Compound UW-ID>]"(" {<UW1>|":"<compound UW-ID>} "," {<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Time" is defined as the relationbetween:

UW1 – an eventor state.

UW2 – a (point or intervalof) time,

where:

• UW1, taken as a whole, occurs at the timeindicated by UW2.

Examples andreadings

tim(look(icl>event), Tuesday(icl>time)) ... lookon Tuesday tim(red(icl>event),morning(icl>time)) ... red in morning

```
tim(cut(icl>event), o'clock(icl>time)) ... cut ... at ... o'clock
```

Related concepts

Time is different from $ldrslt \underline{tmf}$ and $ldrslt \underline{tmf}$ in that time characterized the event or state as a whole, whereas tmf and tmtch describe only parts of the event.

Time is different from

fldrslt <u>coo</u> and ldrslt <u>seq</u> in that time does notdescribe states and events relatively, withrespect to each other, but with respect to certain points in time.

Duration of events is describedusing

fldrslt man.

hading1500tmf (initial time)

"Time-from" defines a time anevent starts or a state become true.

```
tmf ({event},{time})
tmf ({state},{time})
```

Syntax

tmf[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Initial time" (or "time-from") is defined as the relation between:

UW1 – anevent or state, and

UW2 - a time.

where:

- UW2 specifies the time at which UW1 started, or
- UW2 specifies the time at which UW1 is/wastrue.

Examples andreadings

```
tmf(look(icl>event), morning(icl>time)) ... looksince morning
tmf(full(icl>characteristic),noon(icl>time)) ... is full atnoon
```

Related concepts

Initial time is different fromldrslt <u>tim</u> in that tmf expresses the time at the beginning of the event or statewhereas tim expresses a time for the event taken as a whole.

Initial time is different from ldrslt src in that tmf expresses the time at the beginning of the event or statewhereas src expresses characteristics of the obj at the beginning of theevent.

Initial time is different from

fldrslt tmt in that tmf expresses the time at the beginning of the event or statewhereas tmt expresses the time at the end of the event.

hading1500tmt (final time)

"Time-to" defines the time anevent ends or a state becomes false.

```
tmt ({event},{time})
tmt ({state},{time})
```

Syntax

tmt[":"<Compound UW-ID>]"(" {<UW1>|":"<Compound UW-ID>} ","{<UW2>|":"<Compound UW-ID>} ")"

Detailed definition

"Final time" (or "time-to") is defined as the relation between:

UW1 – an event or state, and

UW2 - a time,

where:

- UW2 specifies thetime at which UW1 ended, or
- UW2 specifies the time at which UW1became/becomes false.

Examples andreadings

tmt(think(icl>event), morning(icl>time))... thinkuntil moningtmt(cut(icl>event),noon(icl>time))... cut until noontmt(full(icl>characteristic),tomorrow(icl>time))... be fulluntil tomorrow

Related concepts

Final time is different fromldrslt <u>tim</u> in that tmt expresses the time at the end of the event or state, whereastim expresses a time for the event taken as a whole.

Finaltime is different fromldrslt <u>gol</u> in that tmt expresses the time at the end of the event or state, whereasgol expresses characteristics of the obj at the end of the event.

Final time is different from

fldrslt \underline{tmf} in that tmt expresses the time at the end of the event or state, whereas tmtexpresses the time at the beginning of the event.

hading1500via (intermediate place)

"Via" defines the intermediate place of an event.

via ({event}, {place})

Syntax

via[":"<Compound UW-ID>]"(" {<UW1>|":"<CompoundUW-ID>} ","{<UW2>|":"<Ch

Detailed definition

"Intermediate place" is defined as therelation between:

UW1 – an event, and

UW2 – a concrete orabstract place,

where:

- UW2 is the specific place describing the drslt obj of UW1 at some time in the middle of UW1, or
- UW2 is a thing that describes a place that theobj of UW1 passed by or through during UW1.

Examples andreadings

via(go(icl>event), New York(icl>place))... go ... via New Yorkvia(bike(icl>event), Alp(icl>place))... bike... through the Alpsvia(drive(icl>event),tunnel(icl>thing))... drive ... by way of tunnel

Related concepts

Intermediate place is different fromldrslt <u>src</u>, ldrslt <u>plf</u> andldrslt <u>tmf</u> in that these all refer to the beginning of an event, whereas viadescribes the middle of an event.

Intermediate place is different from

fldrslt gol, ldrslt plt and

fldrslt tmt in that theseall refer to the end of an event, whereas via describes the middle of anevent.

Knowledge-base relations

The following labels are for binaryrelations between UWs within the knowledgebase only. In addition, the conceptual relation labels can be used to further characterize UWs.

hading1500ant(antonym)

```
"Ant" defines an oppisite concept for afocussed concept.
ant ({focussed concept}, {opposite concept})
Syntax
ant "(" <UW1> ","<UW2> ")"
Examples
          ant(good(icl>state), bad(icl>state))
        hading1500equ(synonym)
"Equ" defines anequal concept for a focussed concept.
equ({concept},{equal concept})
Syntax
          equ"(" <UW1> ","<UW2> ")"
Examples
          equ(book(equ>reserve), reserve(icl>event))
        hading1500fld(semanticfield)
"Fld" defines a semantic field inwhich a concept is to be interpreted.
fld ({concept}, {field-concept})
Syntax
          fld "(" <UW1> "." <UW2> ")"
Examples
          fld(hit(fld>baseball), baseball(icl>thing))
        hading1500icl(inclusion)
"Icl" defines a concept of which a focussed concept is a proper subset.
icl ({focussed concept}, {concept})
Syntax
          icl "(" UW1 "," UW2")"
Detailed definition
"Inclusion" is defined as the relation between:
UW1 - an focussed concept
UW2 – a concept,
where:
• UW2 is the super concept UW1.
```

```
Examples
```

icl(dog(icl>animal), animal(icl>thing))

hading1500pof(part-of)

"Pof" defines aconcept of which a focussed concept is apart.

pof ({focussed concept},{concept})

Syntax

pof"(" UW1 "," UW2 ")"

Detailed definition

"Part-of" is defined as the relation between:

UW1 – a part concept, and

UW2 – a whole concept,

where:

• chUW1 is the part of UW1.

Examples

pof(wing(icl>body), bird(icl>animal))

Universal Words

Introduction

Binary relations are made up of conceptualrelations or knowledge baserelations and two UWs. The UWs of binary relations are labeled with character strings and representsimpleor compoundconcepts. In the UNL, there are two classes of UWs:

- simple, unit concepts called "UWs" (Universal Words).
- compound structures of binaryrelations grouped together and called "Compound UWs". These are indicated with Compound UW-IDs, as described below.

UWs

grid Syntax

Informally, UWs are made up of a characterstring (an English-language word) followed by a list of constraints and a list of attributes. These can also be followed by an Instance ID. The meaning and function of each of these parts is described in the next section, on Interpretion.

The following expressions provide a moreformal statement of the syntax of UWs. See Appendix 1 for notational conventions.

```
<UW> ::= ><Head
af0 Word> [<Constraint List>],["." <Attribute List>],[":" <Instance ID>]
<HeadWord> ::= <character>...
<Constraint List> ::= "(" <Constraint> ["," <Constraint>]... ")"
<AttributeList> ::= <Attribute> ["." <Attribute>]...
<InstanceID> ::= <digit> <digit>
<Constraint> ::= <Relation Label> {">" | "<"} <UW>
<Attribute> ::= "@" Attribute Label
<RelationLabel> ::= "and" | "aoj" | "obj" | "icl" | ...
<AttributeLabel> ::= "reason" | "volitional" | "past" | ...
<digit> ::= 0 | 1 | 2 | ... | 9
<character> ::= "a" | ... | "z" | "A" | ... | "Z" | "_"
```

grid Interpretation

HeadWord

The HeadWord is an English word/compound word/phrase/sentence that is interpreted as a label for a set ofconcepts: the set made up of all the concepts that may correspond to thatin English. An Elementary UW (with no restrictions or Constraint List)denotes this set. Each Restricted UW denotes a subset of this set that isdefined by its Constraint List. Extra UWs denote new sets of concepts that do not haveEnglish-language labels.

Thus, the headword serves to organize concepts and make it easier to remember whichis which.

Constraints or Restrictions

The Constraint List restricts the interpretation of a UW to a subset or to a specificconcept included within the Elementary UW, thus the term "Restricted UWs".

The Elementary UW "drink", with no Constraint List, includes the concepts of "putting liquids in the mouth", "liquids that are putin the mouth", "liquids with alcohol", "absorb" and others.

The Restricted UW "drink(icl>event,obj>liquid)" denotes the subset of these conceptsthat includes "putting liquids in themouth", which in turn corresponds to verbs such as "drink", "gulp", "chug" and "slurp" in English.

The restrictions of Restricted UWs, their Constraint Lists, are Constraints. The Constraints that use the Relation Labelsdefined above can be seen as an abbreviated notation for full binary relations: drink(icl>event,obj>liquid) is the same asobj(drink(icl>event),liquid) which means something like "cases of drinking where the obj is a liquid". Constraints can use Relation Labels, as they are defined in the previous sections.

Attributes

The Constraint List can be followed by a list of Attributes, which provide informationabout how the concept is being used in a particular sentence.

Instance ID

Finally, a UW can include anInstanceID. The Instance ID issimply used to indicate some referential information: that there are twodifferent occurrences of the same concept (they are not co-referent). Normally, if the same UW occurs more than once, it is in all cases understood torefer to the same entity or occurrence. For example, if one man greeted anotherman, the same UW would be used twice -- "man(icl>human)" and we could distinguish distinguish one from the other withInstance IDs:

```
man(icl>human):01 for the first and man(icl>human):02 for the other, to make it clear that the first man did not greethimself.
```

grid Types

UWs, then, are character strings (words orexpressions) that can be given specifications, attributes and Instance IDs. Their function in the UNL system is torepresent simple concepts. The three types of UWs, in order of practical importance are:

•Restricted UWs, which are Head Words with a Constraint List,

For example:

state(agt>human,obj>information)

state(equ>nation)

state(icl>situation)

state(icl>government)

• Extra UWs, whichare a special type of Restricted UW,

For example:

ikebana(icl>activity,obj>flowers)

samba(icl>dance)

souflé(icl>food,pof<egg)

murano(icl>glass,aoj>colorful)

• and Elementary UWs, which are bare Head Words with no Constraint List, for example:

go

take

house

state

Restricted UWs

Restricted UWs are by far the most important. Each Restricted UW represents a more specific concept, or subset of concepts.

Consider again the examples of RestrictedUWs given above:

state(agt>human,obj>information) is more specific concept (arbitrarily associated with the English word "state") that denotes situations in which humans produce someinformation, or state something.

state(equ>nation) is more specific sense of "state" that denotes a nation.

state(icl>situation) is more specific sense of "state" that denotes a kind of situation.

state(icl>government) is more specific sense of "state" that denotes a kind of government.

Theinformation in parentheses is the Constraint List and it describes someconceptual restrictions, that's why these are called Restricted UWs. Informally,the restrictions mean "restrict your attention to this particularsense of the word". Thus, the focus is clearly the idea and notthe specific English word.

It often turns out that for agiven language there is a wide variety of different words for these concepts and not, coincidentally, all the sameword, as in English.

Notice that by organizing thesesenses around the English words, we can simplify the task of making a newUW/Specific Language dictionary: we can use a bilingual English/Specific Languagedictionary and proceed from there, specifying the number different conceptsnecessary for each English word.

This of course does not mean thatwe're translating English words; we're justusing the English dictionary to remind us of the concepts that we will want odeal with and thus to organize work more efficiently.

Extra UWs

Extra UWs denote concepts that are not found in English and that have to be introduced as extra categories. Foreign-language labels are used as Head Words. Consider again the examples given above:

```
ikebana(icl>activity, obj>flower)
samba(icl>dance)
soufflé(icl>food,pof<egg)
murano(icl>glass, aoj>colorful)
"something youdo with flowers"
"a kind of dance"
"a kind of food made with eggs"
"a kind of colorfulglass"
```

To theextent that these concepts exist for English speakers, they are expressed with foreign-language loanwords and don't always appear in English dictionaries. So, they simply have to beadded if we are going to be able to use thesespecific concepts in the UNL system. Notice that the Constraint List or restrictions already give some idea of what concept is associated with these Extra UWs and the Constraints binary relation this concept to other concepts already present (activity, flower, egg, food, etc.).

Elementary UWs

Elementary UWs are character strings that correspond to an English word. They are used to structure the knowledgebase and as a fall-back method for establishing correspondences between different language words when more specific correspondences cannot be found.

Compound UWs

grid Introduction

Compound UWs are a set of binary relations that are grouped together so that we can talk about themas if they were a single unit. This allows us to deal with situations like:

[Women who wear big hats in movietheaters] should be asked to leave.

Without Compound UWs, or somethingsimilar, we wouldn't be able to build up complex ideas like"women who wear big hats in move theaters" and thenrelate them to other ideas.

grid Syntax

Compound UWs are indicated by Compound UW-IDs, which are a colon ":" followed by two digits. CompoundUW-IDs can also be followed by an AttributeList.

```
More formally, their syntax can be described as follows:
```

grid Interpretation

Compound UWs denote complex concepts that are to be interpreted as unit-concepts, understood as a whole so that we can talk about their partsall at the same time. Consider again the example given above.

[Women who wear big hats in movietheaters] should be asked to leave.

The example does not mean that [women] or [women who wear big hats] should be asked to leave. Only when we group the structure together and talk about it as a whole unit do we get the correctinterpretation.

Just as we can relate suchcomplex units to other concepts with conceptual relations, we can attachAttributes to them to express, negation, speaker attitudes, etc. which are usually interpreted as modifying the main predicate within the Compound UW.

grid How to define Compound Uws

Compound UWs are defined by placing a Compound UW-ID immediately after the Relation Label in all of the binary relations that are to be grouped together. Thus, in the example below, ":01" indicates all of the elements that are to be grouped together to define Compound UW number 01.

agt:01(wear(icl>event), woman(icl>human).@pl)

obj:01(wear(icl>event), hat(icl>thing))
aoj:01(big(icl>state), hat(icl>thing))

ppl:01(wear(icl>event, theater(icl>place))

mod:01(theater(icl>place), movie(icl>thing))

After this grouphas been defined, wherever ":01" is used as an UW, it means that the UW should be understood as all of these Binary relations.

grid How to cite Compound UWs

Once defined, Compound UWs can be cited orrefered to by simply using the Compound UW-ID as an UW. Tocomplete the example above, we could continue with:

exp(ask(icl>event).@should, :01)

obj(ask(icl>event), leave(icl>event))

Again, ":01" isinterpreted as the whole set of binary relations defined above. Compound UWs can be cited within other Compound UWs.

Attributes of UWs

Introduction

Attribute of UWs are used to describe what is said from the speaker's point of view: how the speaker views what is said. This includesphenomena technically called "speech acts", "propositional attitudes", "truth values", etc. Conceptual relations and UWs are used to describe objectivelythings, events and states-of-affairs in the world. Attributed of UWsenrich this description with more information about how the speaker viewsthese states-of-affairs and his attitudes toward them.

Types of Attributes

Speaker's view of truth

A set of binary relations describes something in the world, but does the speakerthink the description is true? false? possible? The first set of attributes deal with the extent to which the speaker thinks something is true or not. They are attached to the main predicate.

The speaker thinks something is true or has to become true:

.@affirmative

slt .@obligation slt .@insistence

The speaker thinks something is not true or cannot become true:

.@not

The speaker wants to know if something is true:

.@interrogative

The speaker thinks somethingmight be true, might become true or should become true:

slt .@invitation

The variety of possibilities reflectsdegrees of belief, emphasis, and the extent to which what is said should beinterpreted as a suggestion or order, as well as many other social factors such as the relative status of the speakers

grid Time with respect to the speaker

Where does the speaker situate his description in time, taking his momentof speaking as a point of reference? A time before he spoke? After? Atapproximately the same time? This is is the information that defines "narrative time" as past, present or future. These Attributes are attached to the main predicate.

Although in many languages this information is signalled by tense markings on verbs, the concept is nottense, but "time with respect to the speaker". The clearest example is the simple present tense in English, which is not interpreted as present time, but as "independently of specific times".

Consider the example: The earth is round.

This sentence is true in the past, in the present and in the future, independently of speaker time, so although the tense is "present" it is not interpreted as present time.

[no attribute]

grid Speaker's view of Aspect

A speaker can emphasize or focus on a part of an event or treat it as awhole unit. This is closely linked to how the speaker places the event intime. These Attributes are attached to the main predicate.

He can focus on the beginning of the event, looking forward to it(<u>.@begin</u>-soon), or backward to it(<u>.@begin-just</u>). He can focus on the middle of the event().

He can alsofocus on the end of the event, looking forward to it(<u>.@end-soon</u>) or backward to it fromnearby (<u>.@end-just</u>) or from farther away(.

The speakercan choose to focus on the lasting effects or final state of the event(.@state) or on the event as a repeating unit (.

Many other possibilities are available in the world's languages.

grid Speaker's view ofReference

Whether an expression refers to a singleindividual, a small group or a whole set is often not clear. Theexpression "the lion" is not sufficiently explicit for us to know whether the speaker means"one particular lion" or "all lions". Consider the following examples:

The lion is a feline mammal.

The lion is eating an antilope.

In the first example, it seems reasonableto suppose that the speaker understood "the lion" as "all lions", whereas in the second example as "one particular lion".

The following Attributes are used to make explicit what the speaker's view of reference seems to be.

TheseAttributes are usually attached to UWs that denote things.

grid Speaker's Focus

The speaker can choose to focus or emphasize the parts of a sentence to show how important he thinks they are in the situation described. This is often related to sentence structure.

.@pred predicate

.@entry entry point or main UW

One UW marked with "@entry" is essential to each UNL expression.

.@sub dominating UW in a hyper node

One UW marked with "@sub" is essential ina Compound UW to mark its "entry" point...

.@title the head UW in a title

grid Speaker's attitudes

The speaker can also express, directly orindirectly, what his attitudes or emotions are toward what is being said or who itis being said to. This includes respect and politeness toward the listenerand surprise toward what is being

said.

slt.@politeness

t chSpeaker's viewpoint

Many aspects of the speaker's viewpointcan be expressed, in English, using modal auxiliaries indifferent ways. They are attached to predicates, but a special notation hasbeen developed for them:

<Aux-verb>@attribute-label

e.g. can@ability

The following labels are used to clarifythe speaker's viewpoint information that is represented with UWs ofmodal auxiliaries.

@ability Ability, capability of doing things; be ableto, be capable of

@apodosis@customApodosis: could, should, wouldHabitual action: would, used to

@grant To give consent to do: can, could, may, might

@grant-not To not give consentto: mustn't, be not allowed to, may not

@insistence@intentionStrong will to do: shall, will, wouldWill, intention to do: shall, will

@inevitability
 @may
 @obligation
 @obligation-not
 @possibility
 Supposition that something is inevitable: must
 Supposition f actual possibility: may, might
 To oblige someone: shall, must, have to
 Forbid to do: mustn't, needn't, don't have to
 Assume reasonable possibility: can, could

@probability@should@willAssume probability:wouldTo feel duty: should,ought toWill to do: shall, will

The following list shows the set of UWsderived from English modal auxiliaries and their combinations with Attribute labels, to more clearly define each meaning.

CAN

ability, capability can@ability

=be able to, be capable of

He can speak English but he can't writeit very well.

To grant, to give consent can@grant

=be allowed to, be permitted to

Can I smoke in here? = Am I allowed to smoke in here?

Logical possibility can@possibility

(compare : may = capability, actualpossibility)

Anybody can make mistakes.

The road can be blocked = It is possible to block the road.

COULD

Ability in the past could@ability

I never could play thebanjo.

To grant in present or future could@grant

Could I smoke in here?

Possibility at present (logical) could@possibility

The road could be blocked.

Possibility at present (actual) could@may

We could go to the concert.

A supposed resultfrom a supposition contrary to reality could@apodosis

If we had more money, we could buy a car.

MAY

To grant may@grant

=be allowed to

You may borrow my car if you like.

1') Not to grant may@grant-not

You {mustn't/are not allowed to/may not} borrow my car.

Actual possibility may@may

The road may be blocked.

MIGHT

Actual possibility might@may

We might go to the concert. What you say might be true.

SHALL

Speaker's intention towardthe second or third person shall@intention

He shall get this money.

You shall do exactly as you wish.

Speaker's intention upon himself shall@will

I shall not be long.

We shall let you know our decision.

We shall overcome.

Strong will toward the second or third person shall@insistence

You shall do as I say. He shall be punished.

To show legal obligation shall@obligation

The vendor shall maintain the equipmentin good repair.

SHOULD

Obligation should@should

= ought to

You should do as he says.

Logical inevitability should@inevitability

= ought to

They should be home by now.

Presumption contrary to a wish orexpectation should@unexpected

It is odd that you should say this to me.

I am sorry thatthis should have happened.

A supposed result from a suppositioncontrary to

reality (In the first person) should@apodosis

= would

We should (would) love to go abroad if wehad the chance.

WILL

Expectation to other's will will@will

He'll help you if you ask him.

Will you have another cup of coffee?

Will you (please, kindly,etc.) open thewindow?

Speaker's own intention will@intention

I'll write as soon I as can..

We won't stay longer than two hours.

Strong will will@insistence

He will do it, whatever you say. (=Heinsists on doing it…)

He will keep interrupting me.

Inevitability, logical inevitability, orhabitual fact will@inevitability

Inevitability

The game will (must / should) be finishedby now.

logical inevitability,

Oil will float (floats) on water.

habitual fact

He'll (always) talk for hours if you givehim the chance.

WOULD

Expectation to other's will would@will

Would you excuse me?

Strong will would@insistence It's your own fault; you would take thebaby with you.

Habit in the past would@custom

Every morning he would go for a long walk.

John would make a mess of it.

A supposed result from an assumed condition would@apodosis

He wouldsmoke too much if I did not stop him.

Probability would@probability

That would be his mother.

MUST

Compulsory obligation must@obligation

=be obliged to, have (got) to

1') In negation must@obligation-not

=not be obliged to : needn't, don't have to;

=be obliged not to::mustn't You must be back by 10 o'clock.

Yesterday you had to be back by 10 o'clock.

Yesterday you said you must {had to} beback by 10 o'clock.

You {needn't/don't have to/are notobliged to} be back by 10 o'clock.

Logical inevitability must@inevitability

There must be a mistake.

In interrogation, the answer isrhetorically implied.

Mustn't there be another reason for hisbehavior?

OUGHT (TO)

Obligation vitability

They ought to be here by now.

Appendix 1: Conventions for syntax notation

Symbol	<u>Definition</u>
::=	is defined as
	disjunction, "or"
[]	optional element
	one or more occurences
" "	enclosesstring of literal characters
<xxx></xxx>	variable name
	intervening values