The Universal Networking Language (UNL)
Specifications, version 1.0

April, 1998

Restricted-access Document:
Do not copy or distribute,
except as specified under contractual conditions

Introduction

The Universal Networking Language (UNL) is a metalanguage, or representational system, for
describing, summarizing, refining, storing and disseminating information in a machine- and natural-language-
independent form. The present document characterizes the notation, syntax and semantics of the UNL
representation system.

Intended Audience

This document is intended as a consistent and detailed definition of the UNL’s conceptual basis and
notation. The primary audience of this document consists of developers of UNL decoders, encoders and editors
for different languages, as well the grammar and lexicon developers who work with them. The authors assume
some familiarity with basic concepts of linguistics and semantics but attempt to clarify technical concepts and
terminology whenever possible.

This document is not intended as a detailed guide about the representation of specific-language
structures in UNL, although this is undeniably important and raises many interesting and relevant questions. In
the same way that the specification of a programming language gives little information about specific algorithms
and programming techniques, the present specification will give little information about specific linguistic
problems or situations. Further documentation appropriate for each specific language will have to be developed
to deal with these questions. Only a few general guidelines have been included here because the philosophy
behind the UNL is not to dictate norms of encoding for all languages, rather to provide tools for discovering
which strategies will be most appropriate for each.

Motivation to define the UNL

The UNL is an effort to achieve a simple basis for representing the most central aspects of information
and meaning in a machine- and human-language-independent form. Other, comparable, systems exist for
annotating sentence meaning, leading to a serious problem: the existing systems vary greatly in detail and
conception, depending in many cases on the natural language they were developed for, thus generating
fundamental incompatibilities among them and inadequacies in dealing with different languages.

A language-independent metalanguage can circumvent this problem, permitting the coding, storage,
dissemination and retrieval of information independently of the original language in which it was expressed. In
this sense, UNL seeks to provide the tools for overcoming the language barrier in a systematic way.

The current effort has targeted 15 different languages in order to demonstrate the language
independence and generality of the approach.

Universal Networking Language Specifications, version 1.0 1

Goals and scope of the UNL

The UNL can be seen as a kind of mark-up language which represents not the formatting but the core
information of a text. As HTML annotations can be realized differently in the context of different applications,
machines, displays, etc., so UNL expressions can have different realizations in different human languages.

It is important to note that at this point in time it would be foolish to state it possible to represent the
“full” meaning of any word, sentence or text for any language. Subtleties of intention and interpretation make the
“full meaning”, whatever concept we might have of it, too variable and subjective for any systematic treatment.
The UNL avoids the pitfalls of trying to represent the “full meaning” of sentences or texts, targeting instead the
“core” or “consensual” meaning that is most often attributed to them.

In this sense, much of the subtlety of poetry, metaphor, figurative language, inuendo and other complex,
indirect communicative behaviors is beyond the current scope and goals of the UNL. Instead, the UNL targets
direct communicative behavior and literal meanings as a tangible, concrete basis for much or most of human
communication in practical, day-to-day settings.

Extensions and modifications to the present specifications

The present specifications forsee the development of extensions and modifications to the UNL
representational system, while at the same time constraining them is specific ways. Three basic mechanisms are
employed in the UNL: labeled links, “universal words” and attributes. Universal words and attributes can be
added freely to the system, within the limits of the guidelines given below. Only the inventory of link labels is
closed, not admitting additions, deletions or modifications. Once a year, the inventory of link labels will be
evaluated to identify any major problems that might warrant modifications.

The metalanguage defined in this document is intended to be a stable basis for developing UNL tools
and systems. This document, therefore, defines the core of the Universal Networking Language and supercedes
existing, preliminary versions.

System architecture

The UNL system

The UNL system is a set of interrelated modules for the extraction, storage, retrieval and expression of
information.

Encoding is the step where natural language texts are converted into UNL documents. Encoders are
necessary for each human language used. For humans who produce UNL documents, a UNL Editor for that
language will combine encoding and decoding modules that will provide the person with feedback about how
accurate his UNL document is and provide tools to modify it until it is precise enough for the user’s needs.

UNL documents accumulate in a UNL Document Base of human-language-independent information. A
variety of tools are under development for exploring the UNL Document Base: search engines, tools for
checking the well-formedness of the UNL expressions, tools that generate the full list of UWs and make them
available to developers (the UW Gate), tools that explore the relations between the most important concepts in
the Document Base to generate the Conceptual hierarchy or ontology, and tools that allow developers to view all
of the Links in the Document Base (organized in different ways) — the Knowledge Base. Further tools, for
automatic addition and elimination of Links, for example, can be imagined.

A UNL Viewer is available for accessing the Document Base and the different human-language versions
of a given document. The Viewer makes on-line or off-line use of the Decoders developed for each natural
language: these modules convert UNL statements into human-language sentences.

Thus, the UNL System is conceived of as an architecture, a metalanguage and a suite of tools for
developing human-language-independent knowledge bases.

The UNL metalanguage

The UNL represents information and meaning sentence by sentence for each sentence of a given text.
Sentence information is represented as a list of interrelated semantic Links (or binary relations), each between
two of the concepts present in the sentence.

Concepts are represented as character-strings called “UWs”. Rather than provide a fixed, static
definition for each UW, they are used to index the part of the knowledge base where they appear. Since the

Universal Networking Language Specifications, version 1.0 2

knowledge base evolves as information is added, so the information associated with a given UW — its “meaning”
— also evolves.

UWs can be annotated with Attributes which provide further information about how the concept is being
used in the specific sentence where it was found.

The semantic Links that build structures out of UW concepts are signalled in natural language texts by
different grammatical means: word order, suffixes, agreement, etc. for different languages. The UNL tools for
each language define a systematic mapping between the grammatical clues of that language and the UNL
relations that they signal. The Links can also be interrelated in complex ways to represent very complex
relations between concepts or groups of concepts.

A UNL document, then, will be a long list of Links between the concepts cited in the natural-language
text it was generated from, independently of the specific language it was in or of the specific grammatical
mechanisms used for their expression.

It is important to understand that the UNL does not provide a single way of representing a given
meaning. Rather, it provides tools and an environment for exploring different alternatives for semantic
representations that are adequate for a wide variety of languages. During the development effort, sub-languages
or “dialects” of the UNL will surely arise. The best of them will become de facto standards for the development
community.

The Role of English in the UNL

The role of English in the UNL is very limited, but has led to a great deal of misunderstanding. English-
language labels are used for the LinkLabels, UWs and Attributes of the system, leading some people to believe
that the UNL is somehow based on English, a form of disambiguated English or an effort to make English the
universal language of the InterNet. None of these are quite true.

For the simple reason that almost all possible developers of the UNL will have access to English-
language dictionaries, English is used as the language of communication for the project. Many of the Link labels
and UWs denote things that are not at all common in the English language or in Anglo culture. The English
labels are simple mnemonic devices, not intended to represent English-word concepts at all. Just to give a single
example, it would be perfectly acceptable in the UNL to represent the special concept of “light making it
possible for something to be seen” as an event with light as the agent as in the UW see(agt>light, exp>human),
although this concept is quite alien to English speakers.

In the UNL, then, we use English to speak about concepts that are for the most part not at all language
specific.

Overview of this document

This document is a revised and exapanded version of the preliminary specifications first circulated in
1996! and since then in the form of several provisional manuscript versions. The present document is the result
of intensive development efforts led by Hiroshi Uchida and the specifications that were made explicit by the
members of the UNL Specifications Task Force: Hiroshi Uchida (United Nations University Institute for
Advanced Studies, Tokyo — UNL Center), Igor Boguslavsky (Russian Academy of Sciences, Moscow, Russia —
UNL Russia), Christian Boitet (Université Joseph Fourier, Grenoble, France — UNL France), Mike Dillinger
(Federal University of Minas Gerais, Brazil — UNL Brazil), and Jorg Schiitz (IAI, Saarbriicken, Germany — UNL
Germany), with the help of other researchers participating in the UNL Project, in particular Meiying Zhu
(UNU/IAS, Tokyo — UNL Center) and Oliver Streiter (IAl, Saarbriicken, Germany — UNL Germany). The final
version of the specifications was written by Mike Dillinger.

The document has the following sections:

Introduction

This Introduction provides information about the motivation, goals and scope of UNL, as well as an
overview of its functioning.

' UNL Center. 1996. UNL (Universal Networking Language): An electronic language for
communication, understanding and collaboration [Chapter 4]. Tokyo: United Nations University Institute for
Advanced Studies.

Universal Networking Language Specifications, version 1.0 3

Links

The section on Links defines the closed set of conceptual relations that are the backbone of the UNL
representation.

Arguments: UWs and Scopal Units

This section defines the UWs and Scopal Units which are the elements or arguments that are related by
conceptual relations to build Links. The set of UWs forms the basic inventory of concepts. The inventory is
open, so guidelines for adding new UWs are presented.

Attributes of Arguments

This section defines Attributes of arguments and presents the inventory of existing Attribute labels.
Attributes are used to provide further information about how a particular UW or Scopal Unit is used in a given
sentence.

Universal Networking Language Specifications, version 1.0 4

Links

Links, sometimes called “binary relations”, are the building blocks of UNL documents. They are made
up of a conceptual relation and two arguments, with some added mechanisms for making notations on the
relation or arguments. Links often stand alone, but just as often can be grouped together in different ways. This
section deals with the definition and interpretation of the types of conceptual relations that are used as the basis
of the UNL.

Because of their similarity in name and function to “case relations” and “arguments” or “valences” in
linguistics, and their close relation in practice to some grammatical structures, it may seem that the labels used
for these conceptual relations are different names for special grammatical functions. This is emphatically not the
case. The intention is that the labels used denote specific ideas rather than grammatical structures: the idea of
“something that initiates an event,” or “agent” for example, is quite different from “grammatical subject of a
sentence”, even though many times the subject of a sentence will indicate the agent of the event. The agent of an
event may also appear as an adjective or noun modifier, with the preposition “by” or embedded in nouns with
“er” suffixes. The whole point of the conceptual relations is to have a name for these very different grammatical
structures which are conceptually quite the same. Thus, the conceptual relations used here are much more
abstract than the grammatical relations found in sentences.

The conceptual relations between arguments in links have different labels according to the different
concepts they represent. These LinkLabels are listed and defined below. Conventions for notating syntax are
found in Appendix 1; fundamental terms from the conceptual hierarchy that appear in the definitions are defined
in Appendix 2.

Internal structure of Links

Syntax

Links are made up as follows:
Link :: LinkLabel (ScopeNumber) “(“ Argument “,” Argument “)”
These elements will be defined below.
Example Links are:
mod:01(area(icl>place):02).@indef, strategic)
obj(designate(icl>event). @entry.@pred.@may, :01)
ppl(read(icl>event), home)

LinkLabels

LinkLabels are strings of three lower-case alphabetic characters taken from the closed inventory listed
below. Examples are the elements in bold face type below:
mod:01(area(icl>place):02).@indef, strategic)
obj(designate(icl>event).@entry.@pred.@may, :01)
ppl(read(icl>event), home)

ScopeNumbers

ScopeNumbers are digits (“:” followed by two digits) used to define groups of links (called
“ScopalUnits”) so that they can be referred to as a unit. Examples are the elements in bold face type below. The
first example is an instance of ScopeNumbers being used to define a unit; the second example is an instance of
ScopeNumbers being used to cite or refer to a ScopalUnit previously defined.

mod:01(area(icl>place):02).@indef, strategic)
obj(designate(icl>event). @entry.@pred.@may, :01)
ppl(read(icl>event), home(icl>place))

Note that the “:02: in the first example is NOT a ScopeNumber: ScopeNumbers are either attached
directly to LinkLabels or appear alone, as arguments. See InstanceNumbers for further information.

Universal Networking Language Specifications, version 1.0 5

Arguments

Arguments can be UWs or ScopalUnits. Examples are the six elements in bold face type below. Non-
standard formatting has been used to make them clearer.

mod:01(area(icl>place):02).@indef, strategic)
obj(designate(icl>event).@entry.@pred.@may, :01)
ppl(read(icl>event), home(icl>place))

Conceptual relations

Conceptual relations and arguments are components of informational structures called events, states,
facts, assertions, etc., which can be represented by one or more UNL Links. Conceptual relations are
informationally distinct and represent identifiable general, recurring relations between the arguments cited in
sentences. In the UNL, conceptual relations are represented as three-character strings called “LinkLabels” and
are defined as specified below. For ease of exposition, we group discussion of these conceptual relations under
the topics Events, States and Other relations, with other subtopics introduced as necessary.

Events

Events are situations in which some affected thing (marked with obj, cob, exp or opl) changes over time
with respect to its location or some of its other characteristics. In other words, the affected thing has an initial
state which can be described in terms of its time initial characteristics (src), and this initial state changes over
time (the event describes this change) until it reaches a final state, which can be described in terms of its final
characteristics (gol). More details are given in the section about Affected things.

Events can be provoked, initiated or conditioned by things different from the affected thing, and these
are called “event initiators” (marked as agt, cag, ptn or con). More details are given in the section about Event
initiators.

Events can be delimited by citing the initial or final characteristics of the changing object (obj) or by
citing a relevant time (tmf) or place (plf) to mark the beginning of the event and similarly with the time (tmt) or
place (plt) that mark the end of the event. Further information is given in the section about Delimiters of events.

The global place and time of an event can be indicated with tim and ppl or Ipl. These relations are
described under States.

Events can also be described in terms of the characteristics or manner in which it occurs. Thus, we can
speak of a specific manner, method or instrument (met), a characteristic of the event as a whole (man), and/or the
purpose that the agent has in mind (pur). Further information is given in the section about Characteristics of
events.

Details about all of these conceptual relations are provided below, one by one.

Universal Networking Language Specifications, version 1.0 6

Affected things

Events describe the changes that occur in what we call “affected things” and several kinds can be
distinguished: the thing that changes in the main or focussed event (obj), a different thing that may change
during an interrelated, non-focussed event (cob), something (usually human or human-like) that undergoes some
subjective experience (exp) and places that are seen to be affected directly by the event (opl) in addition to other
things (obj).

Because this relationship between the affected thing and the event remains the same whether the event
initiator (agent, condition, etc.) is mentioned or not, different sentence structures with or without the initiator
should lead to similar analyses.

obj (changing or focussed thing)

Definition.

“Changing object” is defined as the relation between:

Argument] — an event, and

Argument2 — a (concrete or abstract) thing,

where:

eArgument? is not a place, and

eArgument? is thought of as changing its characteristics or location as described by Argumentl, or

eArgument2 is what Argumentl is about or refers to, when Argumentl is a “symbolic event” of
perception, cognition, emotion, or communication.

Conceptual examples.

Situations of spontaneous or induced movement or change in state in some thing (obj).
Mental events that refer to concrete or abstract things (obj).

Related concepts.

Changing object is different from cob in that the obj is in focus, whereas the cob is related to a second,
non-focussed event.

Changing object is different from exp in that obj is the topic of a symbolic event, whereas exp is the
human (or human-like thing) where the symbolic event occurs.

Changing object is different from opl in that obj is not seen as a place, whereas opl is seen as a place.

Syntax.

obj(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

obj(move(icl>event), table(icl>object))

obj(melt(icl>event), snow(icl>substance))

obj(think(icl>event), Mary(icl>human))

Readings.

[Argument2] describes the changes that happened to [Argument1], or
[Argument]1] was about [Argument2]
Examples:

The table moved.

[John] moved the table.

The snow melted.

[John] thought of Mary.

Universal Networking Language Specifications, version 1.0 7

cob (co-object)

Definition.
“Co-object” is defined as the relation between:
Argument] — an event, and

Argument2 — a (concrete or abstract) thing,
where:

eArgument? is not a place, and

eArgument? is thought of as changing its characteristics or location as described by a usually implicit,
non-focussed event that is different from Argument! and considered to be its counterpart.

Conceptual examples.

Situations of exchange in which one thing (obj) is given by someone (agt) (in exchange) for another
thing (cob), given by another person (cag). Which of the two things involved will be obj or cob is a question of
focus.

Related concepts.
See the related concepts of obj, opl and exp.

Syntax.

cob(ScopeNumber) “(“ Argument1
Examples:

cob(get(icl>event), money(icl>object))

cob(give(icl>event), time(icl>object))

,” Argument2 “)”

Readings.

[Argument2] changed in order for [Argumentl] to happen, or
In exchange for [Argument2], [Argument1] changed
Examples:
...get [something in exchange] for money
...give [something in exchange] for time

Universal Networking Language Specifications, version 1.0 8

exp (experiencer)

Definition.

“Experiencer” is defined as the relation between:

Argument] — an event or state, and

Argument2 — a human or non-human, seen-as-cognitive entity,

where:

eArgumentl is a subjective or physiological event or state, and

eArgument? is thought of as experiencing, feeling or perceiving Argumentl, or

eArgument? is thought of as the reference, perspective or point of view for defining Argumentl, or
eArgument? is thought of as indirectly affected by Argumentl, as victim or beneficiary, for example.

Conceptual examples.

Situations of subjective perceiving or feeling by someone (exp).
Situations in which subjective evaluations or characterizations are made in terms of a person (exp) used
as a point of reference.

Related concepts.
obj
cob
opl

Syntax.

exp(ScopeNumber)“(“ Argument1 “,” Argument2)
Examples:

exp(feel(icl>event), sick(icl>state))

exp(think(icl>event), Mary(icl>human))

exp(difficult(icl>state), John(icl>human))

exp(die(icl>event), Alex(icl>human))

Readings.

[Argument2] felt or perceived [Argumentl], or
[Argument2] indirectly affected [Argumentl], or
[Argument2] is the basis for describing [Argument!]
Examples:

[John] felt sick

Mary thought [about something]

[the test] was difficult for John.

[his mother] died on Alex

Universal Networking Language Specifications, version 1.0 9

opl (affected place)

Definition.

“Affected place” (or “obj-like place™) is defined as the relation between:

Argument] — an event, and

Argument2 — a place or thing defining a place,

where:

eArgument? is the specific place where the change described by Argumentl is directed, or

eArgument? is a place that is seen as being modified during the event.

eArgument? is usually a part of the thing cited as obj; both the obj and the opl are modified during the
event.

Conceptual examples.

Situations in which a place (opl) is seen as being affected by the event.
Situations in which a place (opl) is cited as part of the changing object (obj).

Related concepts.

Affected place is different from changing object, co-object and experiencer in that what is affected by
the event is a place rather than other kinds of things.

Affected place is different from physical or logical place in that the Affected place is modified during
the event, while the physical and logical place define the environment in which the event happens.

Syntax.

opl(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

opl(look(icl>event), eyes(icl>thing))

opl(pat(icl>event), shoulder(icl>thing))

opl(cut(icl>event), middle(icl>place))

Readings.

[Argument?2] is the specific place toward which [Argumentl] was directed, or
[Argument2] is the part of the obj that [Argument1] modified, or
[Argument?] is a place that was modified during [Argument1].
Examples:

...look [him] in the eyes

...pat [her] on the shoulder

...cut [the paper] in the middle

Universal Networking Language Specifications, version 1.0 10

Event Initiators

One set of conceptual relations focuses on how events are initiated, in particular, on factors that cause or
condition how events come about.

Informally, we can talk about humans (or things similar to humans) who make events happen, and call
their role in the event “agent”. In situations of competition or collaboration, different agents can be distinguished
and called “co-agents” and “partners”.

Finally, when a state or event plays a more indirect role in making an event happen, perhaps making it
possible or only modifying how it happens rather than causing it directly, it can be seen as external to the main
event or playing a secondary role. This role is called “condition” and identifies these indirectly relevant factors.

agt (agent)

Definition.

“Agent” is defined as the relation between:

Argument] - an event, and

Argument? - a human or non-human, seen-as-volitional thing

where:

eArgument 2 is thought of as having a direct role in making Argument 1 happen.

Conceptual examples.
Situations in which someone or something (agt) directly causes an event to happen or begin.

Related concepts.

Agent is different from co-agent in that agent initiates the event in focus, whereas the co-agent initiates a
different, secondary event.

Agent is different from partner in that agent is the focussed initiator of the event, whereas the partner is
a non-focussed initiator.

Agent is different from condition in that agent is the focussed initiator of an event whereas condition is
an indirect, usually unfocussed influence on the event.

Syntax.

agt(ScopeNumber) “(“ Argument1 “,” Argument2 “)”
Examples:

agt(break(icl>event), John(icl>human))

agt(save(icl>event), computer(icl>machine))

agt(tell(icl>event), machine(icl>object))

Readings.

[Argument2] made [Argumentl] happen, or
[Argument2] initiated [Argumentl]

Examples:
John made the breaking happen... John broke...
the computer initiated the saving event... the computer saved...
a machine initiated the telling event... a machine told [me that]...

Universal Networking Language Specifications, version 1.0 11

cag (co-agent)

Definition.

“Co-agent” is defined as the relation between:

Argument] - an event, and

Argument? - a human or non-human, seen-as-volitional thing

where:

eArgument? is thought of as having a direct role in making Argumentl happen,

eArgumentl! is a different kind or instance of the event that is initiated by the Agent, and

eboth arguments of the cag relation are seen as not being in focus (as compared to the agent’s event).

Conceptual examples.

Situations in which two people (agt and cag) are performing something in a coordinated, but
independent way which is presented by focussing on one of them (agt).

Related concepts.

Co-agent is different from agent in that different, independent events occur for the agent and the co-
agent. Moreover, the agent and its event are in focus, while the co-agent and its event are not in focus.

Co-agent is different from the partner in that the co-agent initiates an event that is independent of the
agent’s event, whereas the partner initiates the same event together with the agent.

Co-agent is different from condition in that the co-agent initiates a non-focussed event, whereas the
condition is an indirect influence on the focussed event.

Syntax.

cag(ScopeNumber) “(“ Argument1 “” Argument2 “)”
Examples:

cag(walk(icl>event), John(icl>human))

cag(live(icl>event),aunt(icl>human))

cag(talk(icl>event), machine(icl>object))

Readings.

[Argument2] made [Argumentl] happen, or
[Argument2] initiated [Argumentl]
Examples:
[Someone] walked with John
[He] is living with his aunt
[Someone] talked with a machine

Universal Networking Language Specifications, version 1.0 12

ptn (partner)

Definition.

“Partner” is defined as the relation between:

Argument] - an event, and

Argument? - a human or non-human, seen-as-volitional thing

where:

eArgument? is thought of as having a direct role in making Argumentl happen,

eArgumentl is the same, collaborative event as that initiated by the Agent, and

eboth arguments of the ptn relation are seen as not being in focus (as compared to the agent’s event).

Conceptual examples.

Situations in which two people (agt and ptn) are jointly carrying out the same event and which are
presented from the point of view of only one of the two (agt).

Situations like competing and sharing in which without either one of the participants there can be no
joint event, that are presented focussing on only one of them (agt).

Related concepts.

Partner is different from agent in that the agent and its event are in focus, while the partner and its event
are not in focus.

Partner is different from co-agent in that the co-agent initiates an event that is independent of the
agent’s event, whereas the partner initiates the same event together with the agent.

Partner is different from condition in that the partner initiates the same event as the agent does whereas
the condition is only an indirect influence on that event.

Syntax.

ptn(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

ptn(compete(icl>event), John(icl>human))

ptn(share(icl>event),poor(icl>human))

ptn(collaborate(icl>event), machine(icl>object))

Readings.

[Argument2] made [Argumentl] happen together with the agent, or
[Argument2] initiated [Argumentl] together with the agent
Examples:

[Someone] competed with John

He shared the food with the poor.

[Someone] collaborated with a machine

Universal Networking Language Specifications, version 1.0 13

con (condition or influence)

Definition.

“Condition” is defined as the relation between:

Argument] — an event or state, and

Argument2 — an event or state,

where:

eArguments | and 2 are different and

eArgument?2 is thought of as having an indirect role in making Argumentl happen, that is as some
conditioning or possibilitating (or inhibiting) factor (real or hypothesized) which influences whether or when
Argument] can happen.

Conceptual examples.

Situations in which an event occurs only when some other event or situation (con) happens first or at the
same time.
Situations citing requirements, permission, conditions, etc.

Related Concepts.

See the related concepts of agent, co-agent and partner.

Syntax.

con(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

a0j:01(green(icl>color), light (icl>object))

con(go(icl>event), :01)

agt:01(arrive(icl>event), Mary(icl>human))
agt:02(collaborate(icl>event), team(icl>human)
con(:02, :01)

Readings.

[Argument2] made it possible for [Argument]] to happen, or
[Argument2] was necessary for [Argumentl] to happen, or
If [Argument2] is the case, then [Argumentl] can or will happen.
Examples:
If the light is green, you can go.
Because Mary arrived, it was possible for the team to collaborate.

Universal Networking Language Specifications, version 1.0 14

Delimiters of Events

We identify as delimiters of events environmental or contextual times and places at the beginning of the
event (tmf, plf) and at the end of the event (tmt, plt). These are distinct from the initial state (src) and final state
(gol) of the changing object (obj) involved in that event, although src and gol can also be used to delimit events.
In more complex examples, events can be delimited both in tems of the environment and in terms of the changing
object, as in this example from English:

“I (agt) repeatedly poured water (obj) from the bottle (src) to the glass (gol), from here (plf) to the corner (plt)”
The water changes place, repeatedly going from the bottle to the glass and this complex event is further delimited
in terms of the place where it started (here) and the place where it ended (corner). Similarly, delimitation in
terms of starting and ending times is also possible in English:

“I repeatedly poured water from the bottle to the glass, from 10 o’clock (tmf) until noon (tmt)”

Further examples from English are pairs such as:

I filled the cup to here (plt).
I moved the cup to here (gol).

We talked from New York (plf) to Boston (plt).
We went from New York (src) to Boston (gol).

Universal Networking Language Specifications, version 1.0 15

tmf (initial time or time-from)

Definition.

“Initial time” is defined as the relation between:
Argument] — an event, and

Argument? — a time,

where:

eArgument? specifies the time at which Argumentl started.

Conceptual examples.
Situations in which an event is delimited by stating when it started (tmf).

Related concepts.

Initial time is different from tim in that tmf expresses the time at the beginning of the event whereas tim
expresses a time for the event taken as a whole.

Initial time is different from src in that tmf expresses the time at the beginning of the event whereas src
expresses characteristics of the obj at the beginning of the event.

Initial time is different from tmt in that tmf expresses the time at the beginning of the event whereas tmt
expresses the time at the end of the event.

Syntax.

tmf(ScopeNumber)“(“ Argument1 “” Argument2 “)”
Examples:

tmf(look(icl>event), morning(icl>time))

tmf(think(icl>event), Sunday(icl>time))

tmf(cut(icl>event), minutes(icl>time))

Readings.

[Argument2] is the time at which [Argument1] began, or
[Argument]] has been going on since [Argument2]
Examples:

...looking since morning

...started thinking on Sunday

...cutting since [some] minutes [ago]

Universal Networking Language Specifications, version 1.0 16

plf (initial place or place-from)

Definition.

“Initial place” is defined as the relation between:
Argument] — an event, and

Argument2 — a place or thing defining a place,

where:

eArgument? is the specific place where Argument] started.

Conceptual examples.
Situations delimited by characterizing the beginning of the event in terms of some place (plf).

Related concepts.

Initial place is different from ppl and Ipl in that ppl and Ipl describe events taken as wholes, whereas plf
describes only the initial part of an event.

Initial place is different from plt in that plt describes the final part of an event, whereas plf describes the
initial part of an event.

Syntax.

plf(ScopeNumber)“(“ Argument1 “” Argument2 “)”
Examples:

plf(go(icl>event), home(icl>place))

plf(talk(icl>event), New York(icl>place))

plf(cut(icl>event), edge(icl>place))

Readings.

[Argument2] is the specific place from which [Argument]] started, or
[Argument2] is the place where [Argument]] started.
Examples:

...go from home to ...

...talk from New York [until Boston]

...cut [something] from one edge to ...

Universal Networking Language Specifications, version 1.0 17

src (initial characteristics)

Definition.

“Initial characteristics” (or “source state”) is defined as the relation between:

Argument] — an event, and

Argument? — a state,

where:

eArgument? is the specific state describing the obj of Argument] at the beginning of Argumentl.

Conceptual examples.

Situations in which the beginning of an event are described in terms of the initial characteristics of the
changing object (obj).

Related concepts.

Initial characteristics is different from tmf and plf in that src describes qualitative characteristics and not
time or place.

Initial characteristics is different from gol in that gol describes the characteristics of the obj at the final
state of the event.

Syntax.

src(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

src(go(equ>change), sad(icl>characteristic))

src(change(icl>event), red(icl>color))

src(transform(icl>event), weak(icl>characteristic))

Readings.

[Argument?2] is the state of the obj at the beginning of [Argumentl1].
Examples:

...[she] went from sad [to happy]

...[the light] changed from red [to green]

...[the drink] was transformed from weak [to very strong]

Universal Networking Language Specifications, version 1.0 18

tmt (final time or time-to)

Definition.

“Final time” is defined as the relation between:
Argument] — an event, and

Argument? — a time,

where:

eArgument? specifies the time at which Argumentl ended.

Conceptual examples.
Situations in which an event is delimited by stating when it ended (tmt).

Related concepts.

Final time is different from tim in that tmt expresses the time at the end of the event whereas tim
expresses a time for the event taken as a whole.

Final time is different from gol in that tmt expresses the time at the end of the event whereas gol
expresses characteristics of the obj at the end of the event.

Final time is different from tmf in that tmt expresses the time at the end of the event whereas tmt
expresses the time at the beginning of the event.

Syntax.

tmt(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

tmt(think(icl>event), morning(icl>time))

tmt(look(icl>event), Sunday(icl>time))

tmt(cut(icl>event), noon(icl>time))

Readings.

[Argument2] is the time when [Argument1] ended, or
[Argument1] continued until [Argument2]
Examples:

...think until morning

...stopped looking on Sunday

...cutting until noon

Universal Networking Language Specifications, version 1.0 19

plt (final place or place-to)

Definition.

“Final place” is defined as the relation between:
Argument] — an event, and

Argument2 — a place or thing defining a place,

where:

eArgument? is the specific place where Argument] ended.

Conceptual examples.
Situations delimited by characterizing the end of the event in terms of some place (plf).

Related concepts.

Final place is different from ppl and Ipl in that ppl and Ipl describe events taken as wholes, whereas plt
describes only the final part of an event.

Final place is different from plf in that plt describes the final part of an event, whereas plf describes the
initial part of an event.

Syntax.

plt(ScopeNumber)“(“ Argument1 “” Argument2 “)”
Examples:

plt(go(icl>event), home(icl>place))

plt(talk(icl>event), Boston(icl>place))

plt(cut(icl>event), edge(icl>place))

Readings.

[Argument2] is the specific place where [Argumentl] ended, or
[Argument]] continued until the obj was at [Argument2].
Examples:

...go home [from ...]

...talk [from New York] until Boston

...cut [something from the middle] to the edge ...

Universal Networking Language Specifications, version 1.0 20

gol (final characteristics)

Definition.

“Final characteristics” (or “goal state”) is defined as the relation between:

Argument] — an event, and

Argument? — a state,

where:

eArgument? is the specific state describing the obj of Argument! at the end of Argumentl.

Conceptual examples.

Situations in which the end of an event is described in terms of the final characteristics of the changing
object (obj).

Related concepts.

Final characteristics is different from tmf and plf in that gol describes qualitative characteristics and not
time or place.

Final characteristics is different from src in that gol describes the characteristics of the obj at the final
state of the event.

Syntax.

gol(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

gol(go(equ>change), sad(icl>characteristic))

gol(change(icl>event), red(icl>color))

gol(transform(icl>event), strong(icl>characteristic))

Readings.

[Argument2] is the state of the obj at the end of [Argument1].
Examples:

...[she] went [from happy] to sad

...[the light] changed [from greed] to red

...[the drink] was transformed [from weak] to strong

Universal Networking Language Specifications, version 1.0 21

Characteristics of Events

Besides delimiting events (described in the previous section), we can also describe the characteristics of
an event or the general manner in which it is carried out (man), including more specific information about the
method, means or instruments used (met), and the purpose that the agent has in mind or the objective he wants to

pursue (pur).
The global time and place of an event can be described using tim and ppl or Ipl, which are detailed in the

section on States.

met (method, means or instrument)

Definition.

“Method, means or instrument” is defined as the relation between:

Argument] — an event, and

Argument2 — an (abstract or concrete) thing,

where:

eArgument?2 specifies the (abstarct or concrete) thing which is used or the steps carried out in order to
make Argument] happen.

Conceptual examples.

Situations in which a thing, or use of a thing, is cited as a part of an event.
Situations in which specific steps or procedures are cited as part of an event.
Situations in which a particular method is used to carry out an event.

Related concepts.
Method, means or instrument is different from man in that ...

Syntax.

met(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

met(look(icl>event), telescope(icl>object))

met(solve(icl>event), algorithm(icl>method))

met(separate(icl>event), cutting(icl>event))

Readings.
[Argument2] is the means or method by which [Argument1] was carried out, or
[Argument]1] was done using [Argument2].
Examples:
...look [at something] with a telescope
...solve [the problem] using an algorithm
...separate [two things] by cutting [them]

Universal Networking Language Specifications, version 1.0 22

reach.

event is being carried out, while man and met describe how it is being carried out.

Universal Networking Language Specifications, version 1.0

pur (agent’s purpose or objective)

Definition.

“Agent’s purpose or objective” is defined as the relation between:
Argument] — a (concrete or abstract) thing, and

Argument2 — a (concrete or abstract) thing,

where:

oThe arguments are different, and

eArgument? specifies the thing (object, state, event, etc.) that the agent desires to attain by carrying out
Argumentl, or

eArgument! is done so that the agent can get/receive/acquire Argument2, or

eArgument? is what Argumentl is to be used for.

Conceptual examples.

Situations in which an event or thing is characterized in terms of the objectives some agent wishes to

Situations in which the purpose of some event or thing is described.

Related concepts.

Agent’s purpose or objective is different from gol in that pur describes the desires of the agent, whereas
gol describes the state of the obj at the end of the event.
Agent’s purpose or objective is different from man and met in that pur describes the reason why the

Syntax.

pur(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

pur(come(icl>event), see(icl>event))

pur(work(icl>event), money(icl>thing))

pur(budget(icl>money), research(icl>event))

Readings.
[Argument1] will be used to do [Argumentl], or

[Argument2] is the purpose or objective associated with [Argument2].

Examples:
...come to see [me]
...work for money
...the budget for research

23

man (manner)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Situations where an event is described in terms of its duration or some distance travelled or changed.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

man(sleep(icl>event), hours(icl>time))

Readings.

[Argument2] describes how [Argumentl is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly

...think often [of someone]

...cut [something] with [his] hand in [his] pocket

...[Steven] slept for hours

Universal Networking Language Specifications, version 1.0 24

States

Situations can be described without referring to any of the changes that might be taking place. Such
descriptions most often cite things, places and characteristics, but may cite events, usually by using grammatical
means to remove their explicitly temporal characteristics, such as tense and aspect. These descriptions are called
states and point to things and their characteristics without talking about specific changes. A state expressed by a
noun phrase, for example, can also be combined with descriptions of events to characterize more complex
situations.

Abstract or concrete things can be described in terms of their explicitly stated characteristics (aoj) or
their pressuposed characteristics (cnt) and in terms of their position or location, either literally (ppl) or
metaphorically (Ipl). They can be associated with a point or period of time (tim) or with some range of
phenomena (fmt), as well as described in terms of their parts (pof) or quantities (qua).

Furthermore, things can be described in relation to other things, by making comparisons (bas),
describing proportions or distributions (per), or by chacterizing their associated times as sequential (seq) or
simultaneous (c00).

These conceptual relations are described in the following section.

tim (time)

Definition.

“Time” is defined as the relation between:
Argument] — an event or state,
Argument2 — a (point or interval of) time,
where:

eArgumentl, taken as a whole, occurs at the time indicated by Argument?2.

Conceptual examples.

Characteristics and changes in characteristics (events) can be described in terms of a time at which they
occur.

Related concepts.

Time is different from tmf and tmf in that time characterized the event or state as a whole, whereas tmf
and tmt describe only parts of the event.Time is different from coo and seq in that time does not describe states
and events relatively, with respect to each other, but with respect to certain points in time.

Time is different from Attributes such as @past, @present, etc. in that these Attributes describe the
situation with respect to the time at which the speaker is communicating, whereas time characterizes states and
events with respect to other times, not the speaker’s communicative act.

Duration of events is described using man.

Syntax.

tim(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

tim(look(icl>event), Tuesday(icl>time))

tim(red(icl>event), morning(icl>time))

tim(cut(icl>event), o’clock(icl>time))

Readings.

[Argument2] describes when [Argumentl] is happening, or
[Argument]1] was the case at the time described by [Argument2]
Examples:

...[I will] look on Tuesday

...[it was] red in the morning

...[he] cut [his finger] at [9] o’clock

Universal Networking Language Specifications, version 1.0 25

ppl (physical place)

Definition.

“Physical place” is defined as the relation between:

Argument] — a (concrete or abstract) thing,

Argument2 — a concrete thing understood as a place,

where:

oThe arguments are different, and

eArgument! is or happens in a place characterized by Argument2.

Conceptual examples.

In situations where things are described in terms of where they are or where they occur, ppl is the
relation between the things and the places.

Because abstract things can be events or characteristics, these can also be located with ppl.

Related concepts.

Physical place is different from Ipl in that the reference place for ppl is concrete, whereas for Ipl it is
abstract or metaphorical.

Physical place is different from plf and plt or src and gol in that ppl describes a place with respect to an
event as a whole, whereas these other relations describe position with respect to parts of an event.

Physical place is different from opl in that ppl is not seen as being modified by an event, merely a
reference point for characterizing it, whereas opl is seen as being modified.

Ppl is used for absolute position in general. More specific place relations are best represented as UWs
and used in structures such as:

ppl(man(icl>human), at(icl>place))

mod(at(ic>place), corner(icl>object))

Relative position can best be expressed using bas in structures such as:
ppl(book(icl>object), under(icl>place))
bas(under(icl>place), table(icl>object))

Syntax.

ppl(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

ppl(cook(icl>event), mountain(icl>object))

ppl(red(icl>characteristic), bottom(icl>object))

ppl(hand(icl>object), pocket(icl>object))

Readings.
[Argument2] describes where [Argumentl] is or is happening.
Examples:

...cook [something] on a mountain

...[itis] red on the bottom

...[her] hand is in [her] pocket

Universal Networking Language Specifications, version 1.0 26

Ipl (logical place)

Definition.

“Logical place” is defined as the relation between:

Argument] — a (concrete or abstract) thing,

Argument2 — an abstract or metaphorical thing understood as a place,
where:

oThe arguments are different, and

eArgument! is or happens in a place characterized by Argument2.

Conceptual examples.

In situations where things are described metaphorically in terms of where they are or where they occur,
Ipl is the relation between the things and the places.
Because abstract things can be events or characteristics, these can also be located with Ipl.

Related concepts.

Logical place is different from ppl in that the reference place for ppl is concrete, whereas for Ipl it is
abstract or metaphorical.

Logical place is different from plf and plt or src and gol in that Ipl describes a place metaphorically, with
respect to an event as a whole, whereas these other relations describe position with respect to parts of an event.

Logical place is different from opl in that Ipl is not seen as being modified by an event, merely a
reference point for characterizing it, whereas opl is seen as being modified.

Lpl is used for absolute position in general. More specific place relations are best represented as UWs
and used in structures such as:

Ipl(man(icl>human), at(icl>place))

mod(at(ic>place), ease(icl>characteristic))

Relative position can best be expressed using bas in structures such as:
Ipl(woman(icl>object), under(icl>place))
bas(under(icl>place), stress(icl>characteristic))

Syntax.

Ipl(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

Ipl(cook(icl>event), under (icl>place))

mod(under(icl>place), pressure(icl>characteristic))

Ipl(win(icl>characteristic), competition(icl>event))

Ipl(doctor(icl>human), duty(icl>event))

Ipl(surf(icl>event), internet(icl>object))

Readings.

[Argument2] describes metaphorically where [Argumentl] is or is happening.
Examples:

...cook [something] under pressure

...win [something] in a competetion

...the doctor is on duty

...surf on the InterNet

Universal Networking Language Specifications, version 1.0 27

Characteristics of things

Introduction

Universal Networking Language Specifications, version 1.0

28

fmt (range from-to)

Universal Networking Language Specifications, version 1.0

29

aoj (attribute of things)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
(@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

Readings.

[Argument2] describes how [Argument] is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly

...think often [of someone]

...cutt [something] with [his] hand in [his] pocket

Universal Networking Language Specifications, version 1.0 30

pof (part-of)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
(@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

Readings.

[Argument2] describes how [Argument] is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly
...think often [of someone]
...cutt [something] with [his] hand in [his] pocket

Universal Networking Language Specifications, version 1.0 31

cnt?
non-focussed equivalence

measures

Universal Networking Language Specifications, version 1.0

32

qua (quantity)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
(@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

Readings.

[Argument2] describes how [Argument] is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly

...think often [of someone]

...cutt [something] with [his] hand in [his] pocket

Universal Networking Language Specifications, version 1.0 33

per (proportion, rate or distribution)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
(@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

Readings.

[Argument2] describes how [Argument] is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly

...think often [of someone]

...cutt [something] with [his] hand in [his] pocket

comparisons

Universal Networking Language Specifications, version 1.0 34

bas (basis of comparison)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
(@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

Readings.

[Argument2] describes how [Argument] is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly

...think often [of someone]

...cutt [something] with [his] hand in [his] pocket

Universal Networking Language Specifications, version 1.0 35

Other conceptual relations

Conjunction and disjunction

Universal Networking Language Specifications, version 1.0

36

and (conjunction)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
(@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

Readings.

[Argument2] describes how [Argument] is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly

...think often [of someone]

...cutt [something] with [his] hand in [his] pocket

Universal Networking Language Specifications, version 1.0 37

or (disjunction)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
(@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

Readings.

[Argument2] describes how [Argument] is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly

...think often [of someone]

...cutt [something] with [his] hand in [his] pocket

Universal Networking Language Specifications, version 1.0 38

Indefinite relations

Universal Networking Language Specifications, version 1.0

39

mod (somehow-related, indeterminate modification)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
(@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

“ n

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

Readings.

[Argument2] describes how [Argument] is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly

...think often [of someone]

...cutt [something] with [his] hand in [his] pocket

Universal Networking Language Specifications, version 1.0 40

smd (not semantically related)

Definition.

“Manner” is defined as the relation between:

Argument] — an event or state,

Argument? — a state or characteristic,

where:

oThe arguments are different, and

eArgument! is done in a way characterized by Argument2, or
eArgument? is a state associated (and simultaneous) with Argumentl.

Conceptual examples.

In situations where events or states are described in terms of their characteristics, man is the relation
between the events or states and their descriptions or characteristics, such as the way the event happens, its
frequency, etc.

Related concepts.

Manner is conceptually quite similar to Attributes of “aspect” such as @progress, @complete, and
(@repeat. These attributes are specfic instances of manner that are so widespread that they have simply been
given more convenient formatting conventions. It would be just as possible, in the UNL, to express them as
manner statements, by representing the attribute as a UW.

Manner is different from met in that met describes how an event is carried out in terms of the
instruments or component steps of the event, whereas man describes other quantitative or qualitative
characteristics of the event as a whole.

Syntax.

man(ScopeNumber)“(“ Argument1 “,” Argument2 “)”
Examples:

man(look(icl>event), quickly(icl>manner))

man(think(icl>event), often(icl>frequency))

ppl:01(hand(icl>object), pocket(icl>object))

man(cut(icl>event), :01)

Readings.

[Argument2] describes how [Argument] is happening, or
[Argument1] is happening in the way described by [Argument2]
Examples:

...look quickly

...think often [of someone]

...cutt [something] with [his] hand in [his] pocket

Universal Networking Language Specifications, version 1.0 41

Universal Networking Language Specifications, version 1.0

42

Arguments: UWs and ScopalUnits
Introduction
UWs

ScopalUnits

Universal Networking Language Specifications, version 1.0

43

Attributes of Arguments

Universal Networking Language Specifications, version 1.0

44

Appendix 1: Conventions for notating
syntax

Appendix 2: Basic terms of the
conceptual hierarchy

Universal Networking Language Specifications, version 1.0

45

